STIR FILE COPY

INVESTIGATION OF THE HIGH
ANGLE OF ATTACK DYNAMICS OF THE
F-15B USING BIFURCATION ANALYSIS
THESIS
Robert J. McDonnell Captain, USAF

AFIT/GAE/ENY/90D-16

DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

INVESTIGATION OF THE HIGH ANGLE OF ATTACK DYNAMICS OF THE F-I5B USING BIFURCATION ANALYSIS

THESIS
Robert J. McDonnell
Captain, USAF
AFIT/GAE/ENY/90D-16

INVESTIGATION OF THE HIGH

ANGLE OF ATPACK DYNAMICS OF THE F-15B USING BIFURCATION ANALYSIS

THESIS

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science of Aeronautical Engineering

Robert J. McDonnell, B.S. Captain, USAF

December 1990

Approved for public release; distribution unlimited

Acknowl edgemenis

This work done in this thesis owes much to the people who previously opened up this avenue of investigation. First of all i'd like to thank my advisor, Captain Jim Planeaux for his interest in bifurcation theory and the help he provided in completing this work. Dan Baumann is also recognized for his work in developing the $\mathrm{F}-15$ model used in the thesis and the valuable information he provided. I would also like to thank my thesis committee, Dr. Robert Calico, Dr. Curtis Srenny, and Dr. Brad Liebst, for their valuable comments during the review of this document. I also want to remember Captain Wayne Wilsdon, who helped me struggle through Wings and Bodies, Computational Fluids, and Panelling Methods, and who's tragic death made us all aware of how precious life really is. And to my family and friends, thanks for all your advice and support throughout this ordeal.

Asknowledgements ii
List of Figures iv
List of Tables vi
List of Symbols vii
Aiostract xii
I. Introduction 1
Spins 2
Previous Studies 2
Overview 5
II. Spin Theory 7
III. Bifurcation Theor: 10
Equilibrium Points 10
Stability 12
Turning Points 12
Bifurcation Points 14
Hopf Bifurcation 16
AUTO Software 19
IV. Model Development 21
Aircraft Description 21
Force and Moment Equations 22
Equations of Motion 24
Model Mocifications 27
V. Results 29
Comparison wirn Unmodified Model 30
Baseline Model Spin Characteristics 32
Throttling 40
Asymmetric Thrust 46
Thrust Vectoring 53
Pitch Vectoring 53
Yaw Vectoring 59
VI. Conclusions 65
Appendix A: F-158 Weight and Balance Data 69
Appendix B: Driver Prcgram 71
Appendix C: Complete Bifurcation Diagrams 99
Bibliography 104
Vita 108

List of Figures

Figure 3-1 Turning Foint on a Bifurcation Diagram 13
Figure 3-2 Limit Points Showing Hysterisis 14
Figure 3-3 Supercriticai Fitchfork 1.5
Figure 3-4 Subcritical Pilchfork 16
Figure 3-5 Limit Cycle of a धopf Bifurcation 18
Figure 3-6 Hopf Point on a Bifurcation Diagram 18
Figure 4-l Physical Description of Thrust Variables 23
Figure 1-2 Comparison of the Revised and Baumann CMQ 28
Figure 5-1 Ridder sweep Using Baumann Model 31.
Figure 5-2 Revised Model Rudder Sweep 32
Figure 5-3 Revised Mirdel Elevator Sweer 34
Figure 5-4 Simulation of Spin Recovery Using Elevator 36
Figure 5-5 Simulation of Spin Recovery Using Rudder 37
Figure 5-6 Simulation of Spin Recovery Using Ailerons 38
Figure 5-7 Low Alpha Engine Throttling 41
Figure 5-8 Elevator Sweep with Thrust $=0$ Pounds 42
Figure 5-9 Elevator Sweep with Thrust $=29200$ Pourds 44
Figure 5-10 Throtting in a Flat Spin 45
Figure 5-il Simulation of Throttling in a Flat Spin 45
Figure 5-12 Right Engine Asymmetric Thrust 48
Figure 5-13 Left Engine asymmetric Thrust 48
Figure 5-14 Elevator Sweep with Right Engine $=0$ Lbs 49
Figure E-15 Elevator Sweep with Left Engine $=0$ Lbs 51
Figure 5-16. Asymmetric Thrust Spin Recovery 52
Figure 5-17 Flat Spin Pitch Vertoring $T=8.00 \mathrm{lbs}$ 55
Figure 5-18 Flat Spin Fitch Vestoring $T=29200$ lis 55
Figure 5-19 Angular Velocities Due to Pitch Vectoring 56
Figure 5-20 Ang:ular Velocities Due to Pitch Vectoring 56
Figure 5-21 Simulation of Pitch Vecturing in a Flat Spin 58
Figure 5-22 r vs Time in Pitch Vectoring Simulation 58
Figure 5-23 Yaw Vectoring $T=8300$ lbs 61
Figure 5-24 Yaw Vectoring $Y=29200$ lbs 62
Figure 5-25 Simulation of Yaw Vectoring ia a mat Spin 63
Figure 5-26 r vs Time in Yaw Vector Simulation 64
Figure C-1 Elevator Sweep, $T=8300 \mathrm{lbs}$ 99
Figure C-2 Elevator Sweep, $T=0 \mathrm{lbs}$ 100
Figure C-3 Elevator Sweep, $T=29200$ lbs 101
Figure C-4 Elevator Sweep, Right Engine = 0 lbs 102 Figure C-5 Elevator Sweep, Left Engine $=0$ lbs 103

List of Tabies

Table I. Stable Spin Angtilar Velocities 39 Table I:. Phosical Characteristics of the F-15B..... 69

List of Symbols

$C_{1} \quad$: rolling moment coefficient
$C_{1 \beta} \quad$: partial derivative of rolling moment due to sideslip
C_{18} : partial derivative of rolling moment due to aileron deflection
C_{18}. : partial derivative of rolling moment due to elevator deflection
$C_{18 \Delta .}$: Partial derivative of rolling moment due to differential elevator
$C_{18 r} \quad: \quad$ partial derivative of rolling moment due to rudder deflection
$\mathrm{C}_{1 \mathrm{p}} \quad$: roll damping
$\mathrm{C}_{1 r} \quad$: roll damping due to yaw rate
$C_{m} \quad$: pitching moment coefficient
$\mathrm{C}_{\mathrm{mo}} \quad$: basic pitching moment coefficient
$\mathrm{C}_{\mathrm{mq}} \quad$: pitch damping
$C_{n} \quad$: yawing moment coefficient
$C_{n p} \quad$: yawing moment due to sideslip
C_{n}. : yawing momen: due to sideslip, high angle of attack increment
$C_{\text {non }} \quad$: partial derivative of yawing moment due to aileron deflection
$C_{\text {ab. }} \quad$: partial derivative of yawing moment due to elevator deflection
C_{n-4} : partial derivative of yawing moment due to differential elevator deflection
$C_{\text {nbr }} \quad$: partial derivative of yawing moment due to rudder deflection

$I_{x x}$: moment of inertia about y axis, slug ft ${ }^{2}$
I_{y}	: moment of inertia about z axis, slug ft^{2}
I_{2}	: product of inertia in x and z direction, slug ft^{2}
L	: rolling moment, ft lbf
M	: pi.tching moment, ft lbf
m	: aircraft mass, slugs
N	: yawing moment, ft lbf
\bar{N}	: moment acting on airplane
p	: roll rate, radians/second
q	: pitch rate, radians/second
\bar{q}	: dynamic pressure, lbf/ft ${ }^{2}$
r	: yaw rate, radians/second
S	: wing planform area, ft^{2}
T	: thrust force, lbf
T_{1}	: left engine thrust, lbf
$\mathrm{T}_{\text {Ix }}$: left engine thrust in x direction, lbf
T_{19}	: left engine thrust in y direction, lbf
T_{12}	: left engine thrust in z direction, lbf
T ${ }_{\text {r }}$: right engine thrust, lbf
$\mathrm{T}_{\text {fx }}$: right engine thrust in x direction, lbf
Try	: right engine thrust in y direction, lbf
T_{Tz}	: right engine thrust in 2 direction, lbf
T,	: thrust in x direction, lbf
Ty	: thrust in y direction, lbf
T	: thrust in z direction, lbf

t : time, seconds
$u \quad$: vector of aircraft states
$V_{\text {tr }} \quad$: aircraft true airspeed, ft/sec

Abstract

Previous studies predicted the $\mathrm{F}-15 \mathrm{~B}$ high angle of attack and flat spin behavior using bifurcation analysis. These studies varied control surface deflections to find equilibrium and periodic solutions. The purpose of this thesis) research was to use bifurcation analysis to predict the $F-15 B$ high angle of attack and flat spin behavior as a result of variable thrust, asymmetric thrust, and thrust vectoring.

Using a previously developed model of the $\mathrm{F}-15$, bifurcation analysis and continuation methods were used to map out the equilibrium and periodic solutions of the model as a function of the thrust parameters. A baseline bifurcation elevator deflection angle, diagram, as a function of alpha and of.. of the equilibrium solutions for the $\mathrm{F}-15$ was developed. Thrust was varied and changes were identified. Thrust asymmetries were introduced and their effect on entering and recovering from spins was identified. Thrust vectoring was introduced to see how pitch and yaw vectoring can aid in the entry and recovery from spins. Where deemed necessary, time history simalations were presented to further explain $\mathrm{p}-15$ behavior. Kounonds: Spinmia notion; Aerodynamic stability; lot fighters; Equations of motion, Bifurcation mathematics, Angle of attack; Aerodynone on: roil surfaces. Theses, (EDE)

INVESTIGATION OF THE HIGH ANGLE OF ATTACK DYNAMICS OF THE F-15B USING BIFURCATION ANALYSIS

I. Introduction

In the military filight environment, pilots must regularly place themselves in the high angle of attack flight regime to out maneuver their opponent. Unfortunately, maintaining controlled flight in this regime is difficult. Loss of control can occur through nonlinear behavior such as stalls, departures, wing rock, nose slice, spin entry, and full spins. In combat these will often lead to fatal results. In peacetime training these are not as dangerous as long as there is enough altitude to recover to controlled flight. However, spins require quite a bit more altitude to recover than the other aircraft motions. As a consequence, many aircrews and their multimillion dollar aircraft are lost in spin accidents. Between the years 1966 and 1970 , two hundred fighter aircraft worth 360 million dollars were lost in spin accidents resulting in 100 fatalities (1:1). Even the F-15, the most advanced fighter in the U.S. Air Force today, is not immune to spin losses. Baumann (6:2-4) describes the details of a recent Air Force accident inves-
tigation board in which an $\mathrm{F}-15$ was lost due to an flat spin. A routine training flight turred into the total loss of an aircraft because of an inadvertent spin.

Spins
The motion of an airplane in a spin is characterized by an angle of attack between the stall and 90 degrees, and a rapid, wings level descent toward the earth while rotating about a vertical or near vertical axis (24:1). Spins are most commonly entered by stalling the wings and introducing a yaw. The yaw increases the lift on the wing outside of the yaw and further stalls the inside wing. The increased drag on the stalled wing further drives the yaw. Additionally, a rolling moment in the direction of the yaw is introduced by the asymmetric lift distribution. Depending on the severity of the induced motions and the aircraft's physical characteristics, a spin may or may not develop. A developed spin is therefore a complex balance of aerodynamic and inertia forces and moments. Once a spin develops, a recovery to normal flight must be accomplished by stopping the yaw rotation or breaking the stall. Application of a yawing moment about the body z axis opposite the spin is the preferred method of recovery.

Previous Studies

A rough idea of a certain airplane's spin characteristics can be estimated during design by looking at key aerodynamic and inertial factors. However, there is no clear cut design methodology for high angle of attack aerodynamics because of the nonlinear behavior of the fluid dynamics of separated flows, a high dependence on configuration, and a lack of ground test facilities (10:1). Vertical wind tunnels can be used to gain an idea of a design's spin characteristics, however, correlation with full scale aircraft can be questionable because of Reynolds number effects (24:7). Analytical studies can provide an additional tool in predicting the spin characteristics of an airplane.

Analytical predictions of spin behavior have been performed for many years. in 1954, Scher (29) and Burk (8) both demonstrated that spins could be simulated on computers by using wind tunnel aerodynamic coefficients and solving the nonlinear equations of motion. Scher produced time histories of spin entry, developed spins, and spin recovery. Burk produced time histories of spin recoveries using antispin yaw moments and found that the applied moment aided the recovery from the spin. Additional time history studies were done in 1959 by Scher, Anglin, and Lawerence using a 60 degree delta wing airplane (30), in 1960 by Neihouse, Klinar, and Scher of the $\mathrm{X}-15$ (24), and in 1972 by Adams of
severa! airplanes (1). In 1966, Grafton produced time histories of spins to determine the effect thrust has on spins (13) and found that generally, applying thrust aided the recovery from spins. These studies were able to simulate spins, but were unable to accurately describe the causes of nonlinear behaviors such as jumps or the onset of oscillatory motion.

In 1979, Carrol and Mehra (9) used a cufferent approach to analytical methods when they applied bifurcation theory and continuation methods to solve the nonlinear equations of motion. Equilibrium solutions of the nonlinear system were traced out by varying control surface deflections. The stability was determined by looking at the eigenvalues of the linearized system. The new method was not a simulation, like the previous studies, but a map of the airplane's equilibrium solutions and therefore offered a more global view of the nonlinear behavior of the aircraft. More important though, the natire of the tiansitions from stable to unstable equilibrium solutions revealed the causes and onset of nonlinear behavior. Guicheteau $(15,16)$, Hui and Tobak (18), Zaçaynov and Goman (36), Hawkins (17), and Jahnke (19, 20,21) aiso used bifurcation analysis to observe the nonlinear behavior of different aircraft configurations, including the development of spins. Barth (5) and Plansaux and Barth (25) investigated the nonlinear behavior of the F-15 using bifur-
cation analysis and proved its ability to predict the aircraft's motion, including the onset of wing rock. However, their model was not realistic above 40 degrees angle of attack and therefore could not predict spins. Beck (7) and Planeaux, Beck, and Baumann (26) continued this research using control augmentation.

Previous work in F-15 spin research using bifurcation theory was done by Baumann (6). He created an F-15 model that more realistically describes the aero coefficients at high angles of attack by curve fitting $F-15$ aerodynamic data to angles of attack up to 90 degrees. Using the new F-15 model, Baumann found stable flat spins between 70 and 80 degrees angle of attack. These flat spins correlate well with flight test data. $(22,34)$

Overview

This paper continues the $\mathrm{F}-15$ spin research accomplished by Baumann using a modified Baumann model which includes control of variable thrust, asymmetric thrust, and thrust vectoring. Bifurcation analysis will be used to determine how effective the thrust parameters are in causing and recovering from flat spins. Alchough current operational F -15's do not have the capability to vector thrust, nozzles with vectoring features are presently installed on the F-15 STOL demonstrator aircraft presently undergoing flight testing at Edwards AFB, Ca. (28:51). Additionaliy,
the Rockwell/MBB X-3l aircraft will have thrust vectoring paddles installed (27:117). In the $\mathrm{X}-31$ studies, thrust vectoring will be used to evaluate its combat utility at low airspeeds and high angles of attack. Analytical and simulation studies, such as those done by Schneider (31) and Anderson (2), have shown the abilicy of thrust vectoring to increase an aircraft's agility. However, only the study by Burk (8) has gone on to siow the potential use of applied moments in spin recoveries.

Chapter $I l$ wiil discuss in more details, the dynamics or spins and recovery firom them. Chapter III will briefly discuss bifurcation theory and the continuation mettod used to trace out the branches of the bifurcation diagram. Chapter IV will describe the $\mathrm{F}-15$ model and the modifications made to the Baumann $\mathrm{F}-15$ model. Chapter V presents the results that were found during the research. In Chap'er VI, the conclusions will be presented and ideas of future researct: using this technique will be given.

II. Spin Theory

The previous chapter defined sicin motion and gave a simple example of how spins are typically entered. This Chapter will look at flat spins and s.iow hriefly how the aerodynamics and physical characteristics of an airplane affect its abslity to recover from the spin. Most of the informatisn in this chapter is referenced from Neihouse, Klinar, and Scher (24).

The most dangerous of all spins is the flat spin. It is characterised by an angle of attack approaching 90 degrees and high yaw rotation rates. As the plane approaches 90 degrees, the aerodynamic control surfaces become ineffective due to blockage by the wings and fuselage and recovery may be difficult. The inertia characteristics of modern fighter aircraft compound the difficulty in recovering from a flat spin. Since most of the weight is concentrated in the fuselage, the high yaw rotation rate is accompanied by a large amount of angular momentum. The aerodynami:: surfaces must provide moments to counter this angular momentum and break the spin. The decreased effectiveness of the control surfaces couples with the large amount of angular momentum to make recovery from flat spins much more difficult. Spin test aircraft are often fitted with drogue parachutes to aid in the recovery from flat spins. However, operational aircraft do not have the luxury of spin parachutes and are
often lost due to flat spins. Vectoring an aircraft's thrust against the spin is a potential source of additional moments to decrease the angular momentum. Unfortunately, modern fighters are not equippea with vectoring nozzles either. Asymmetric thrust settings in a multiengine aircraft are another possible source for antispin moments.

Since the main somponent of moticn in a developed spin is the rotation about the z axis (yawing motion), the recovery from the spin therefore necessitates decreasing the rate of yaw rotation, r. Eqn (1) represents the \dot{r} equation of an aircraft in principal axes.

$$
\begin{equation*}
\dot{r}=\frac{M_{z, \text { aro }}}{I_{z}}+\frac{I_{x}-I_{y}}{I_{z}} p q=\frac{\bar{q} S \bar{c}}{I_{z}} C_{n}+\frac{I_{x}-I_{y}}{I_{z}} p q \tag{1}
\end{equation*}
$$

The yawing rate can be reduced by making r negative. Most conventional aircraft have inertia characteristics that make the coupled term of $i_{x}-I_{y}$ small. Therefore, the aerodynamic yaw moment created by the rudder is the primary moment in recovering from spins for this type of configuration. The inertia characteristics of modern fighter aircraft make the coupled term of $I_{x}-I_{y}$ a large negative number. A decrease in the yaw rate can be accomplished by coupling the roll and pitch rates to provide an antispin yaw moment. Assuming that the plane is in a right spin, a negative \dot{r} ca. be achieved by producing a positive pitch and rcll rate. To
most pilots this is not intuitive since it requires prospin control inputs (i.e. aileron into the spin and pitch up). Accompanying this with an antispin rudder deflection seems to be the most practical method at recovering from a flat spin. The F-15 flight manual recommends nearly full aileron/differential stabilator deflections in the spin direction to recover from flat spins (34:6-7). The use of yaw thrust vectoring and asymmetric thrust settings can also provide direct antispin yaw moments. Pitch vectoring can provide a coupling term or can provide a nose down moment to try to break the stall.

III. Bifurcation Theory

Nonlinear phenomena are responsible for a variety of effects. Jumping between modes, sudden onset or vanishing of periodic oscillations, loss or gain of stability, buckling of frames and shells, ignition, combustion, and chaos are but a few examples. Nonlinear phenomena arise in all fields of physics, chemistry, biology, and engineering. The classical mathematical discipline that treats nonlinear phenomena is bifurcation theory. $(33, x i)$

This chapter will discuss the basic principles of bifurcation thenry and their use in understandins nonlinear behavior. Some of the concepts covered will be equilibrium solutions, stability, turning points, bifurcation points and Hopf bifurcations. Most of the information in this chapter is referenced from Seydel (33). The software program used in this research, AUTO, will also be described.

Equilibrium Points

Equilibrium points represent steady states of a dynamical system; the system is at rest or in uniform motion. Equilibrium points are also referred to as stationary points. The motion of a non-time dependent system can be modelled mathematically as

$$
\begin{equation*}
\dot{u}-f(u) \tag{2}
\end{equation*}
$$

where u is the state vector. The equilibrium states of this system would satisfy the equation

$$
\begin{equation*}
f(u)=0 \tag{3}
\end{equation*}
$$

An aircraft in this state would exhibit no translational or angular accelerations and would have constant roll and pitch angles.

The dependence of the system on some control parameter can be found by varying the parameter and finding any new equilibrium points. The equation can be represented as

$$
\begin{equation*}
\dot{\mathbf{u}}=\mathrm{f}(\mathbf{u}, \lambda) \tag{4}
\end{equation*}
$$

where λ is the control parameter. This parameter is called the bifurcation parameter. In an aircraft model, these parameters would be such things as the elevator deflection or thrust level. A qualitative idea of system's dependence on the varying parameter is found by plotting the new value of a representative state variable versus the value of the parameter. This diagram is called a bifurcation diagram. For the aircraft model with the elevator deflection as the bifurcation parameter, a bifurcation diagram provides an idea of the aircraft's equilibrium motion as the elevator is deflected from one value to another. If the elevator is varied from stop to stop, the global behavior of the aircraft can be found. Unfortunately, these diagrams tell little of the aircraft response over time or of the. stability of the equilibrium points.

Stability

The stability of an equilibrium point is determined by identifying whether the system will return to the equilibrium point if it is disturbed. A point is considered stable if the response to a small perturbation is small as time goes to infinity. If the response goes to zero as time goes to infinity it is considered asymptotically stable. It is unstable if the response grows as time goes to infinity. A neutrally stable point would neither go to zero nor grow. The size of the perturbation is important since an equilibrium point may be stable for a small perturbation but unstable for a larger one.

Stability can be found by linearizing the system around the equilibrium point. This is a good approximation of the nonlinear system close to the equilibrium point. The stability can then be determaned by looking at the eigenvalues of the Jacobian matrix of the linear system. The system is stable if the real parts of the eigenvalues are negative or zero. A positive real part indicates that the point is unstable.

Turning Points

A turning point in a nonlinear system has a single eigenvalue equal to zero. Figure $3-1$ is a bifurcation diagram with a turning point found in the differential equation

$$
\begin{equation*}
\dot{y}=\lambda-y^{2} . \tag{5}
\end{equation*}
$$

At the turning point or limit point, the only equilibrium solution is $\lambda=0, y=0$. With $\lambda>0$ there are two solutions. The solution $+\sqrt{\lambda}$ is stable, while $-\sqrt{\lambda}$ is unstable. Turning points do not necessarily separate stable equilibria from unstable equilibria. Unstable solutions can also exist on both sides of the turning point as one eigenvalue crosses zero. Fig. 3-1 also identifies stable equilibria as being solid lines while unstable equilibria are identified by dashed lines.

Figure 3-1 Turning Point on a Bifurcation Diagram

A unique phenomenon called hysteresis cccurs when a branch loses stability at a turning point and then becomes stable at another turning point. Fig. 3-2 is a bifurcation diagram of a typical hysteresis point. Hysteresis leads to
jump phenomena between the stable branches as the parameter j.s varied beyond either limit point. Aircrait can display jump phenomena between $s t a b l e$ states, such as the jump from low angle of attack equilibria to a high angle of attack spin. Two good articles dealing with jump phenomena in aircraft maneuvers are written by Schy and Hannah (32) and Young, Schy, and Johnson (35).

Figure 3-2 Limit Points Showing Hysteresis

Bifurcation Points

Bifurcation points also have one zero eigenvalue. However, unlike a turning point, there are solutions for values of λ on both sides of a bifurcation point. Fig. 3-3 is an example of the pitchfork bifurcation that develops in the differential equation

$$
\begin{equation*}
y=\lambda y-y^{3} \tag{6}
\end{equation*}
$$

For all values of λ the trivial solution, $y=0$, is an equilibrium solution. Additionally, for $\lambda>0$ there are two nontrival equilibria, $y= \pm \sqrt{\lambda}$. However, the branch $y=0$ losses stability at the bifurcation point and a bifurcation of two stable branches occurs. This is referred to as a supercritical pitchfork.

Figure 3-3 Supercritical Pitchfork

If the branch $y=0$ gains stability at the bifurcation point and a bifurcation of unstable branches occurs, the result is called a subcritical pitchfork. Fig. 3-4 is an example of a subcritical bifurcation. The behavior at these bifurcation points is also referred to as a stationary or steady state bifurcation.

Figure 3-4 Subcritical Pitchfork

Hopf Bifurcation

The types of nonlinear phenomena identified so far are for equilibrium solutions. The type of bifurcation that connects equilibrium solutions with periodic motion is the Hopf bifurcation. Periodic solutions arise at points where two eigenvalues of the linearized system become purely imaginary. For an example, a Hopf bifurcation arises from the two equations

$$
\begin{align*}
& \dot{y}_{1}=-y_{2}+y_{1}\left(\lambda-y_{1}^{2}-y_{2}^{2}\right) \tag{7}\\
& \dot{y}_{2}=y_{1}+y_{2}\left(\lambda-y_{1}^{2}-y_{2}^{2}\right) .
\end{align*}
$$

The only equilibrium solution for all λ occurs at $y_{1}=y_{2}=0$. However, the eigenvalues are $\lambda \pm i$ which indicates that the equilibrium points are unstable for $\lambda>0$
and stable for $\lambda<0$. A Hopf point is located at $\lambda=0$ since both eigenvalues are purely imaginary. Additionally, a r'ange of stability takes place without a turning point or any branches bifurcating. The exchange of stability occurs through the formation of a family of limit cycles at the Hopf point.

Limit cycles are found by putting y_{1} and y_{2} into polar coordinates

$$
\begin{equation*}
y_{1}=\rho \cos \theta, y_{2}=\rho \sin \theta \tag{8}
\end{equation*}
$$

and then substituting them into Eqn (7). By manipulation this yields

$$
\begin{gather*}
\dot{\rho}=\rho\left(\lambda-\rho^{2}\right) \tag{9}\\
\dot{\theta}=1 . \tag{10}
\end{gather*}
$$

This shows that $\dot{\theta}=1$ which is not an equilibrium solution. For $\lambda>0$ the result is a periodic orbit with an amplitude growing by $\sqrt{\lambda}$. Fig. 3-5 shows how this looks in three dimensions. The limit cycle encircles the unstable equilibrium. Fig. 3-6 is an example of a Hopf bifurcation on a bifurcation diagram. A stable branch goes unstable at the Hopf point. The circles represent the maximum amplitude of the limit cycle at λ. Closed circles indicate stable limit cycles and open circles indicate unstable limit cycles.

Periodic solutions lose stability via three mechanisms;

Figure 3-5 Limit Cycles Near a Hopf Bifurcation (26:63)

Figure 3-6 Hopf Point on a Bifurcation Diagram
turning points, period doubling, and bifurcation into a torus. Floquet multipliers, which are analogous to eigenvalues, are used to find the stability of a limit cycle.

AUTO Software

The tool used in this research to trace out equilibrium branches, determine stability, identify turning points and bifurcation roints, and find limit cycles is the program AUTO $\begin{gathered}\text { ritten } \\ \text { by } \\ \text { Doedel (}\end{gathered}$ (u_{0}, λ_{0}), which satisfies Eqn (3), Doedel uses the psuedo arclength continuation technique to trace out equilibrium solutions for new values of λ. The psuedo arclength technique varies the stepsize along the branch and using the direction vector ($\dot{u}, \dot{\lambda}$) a predictor-corrector algorithm finds the next solution. The predictor/corrector algorithm used is the Newton method. The psuedo arclength technique allows the algorithm to be scaled so it can compute near and past limit points where the direction vector is infinite. Doedel also incorporates an adaptive stepsize. If the solution converges rapidly using the predictor/corrector algorithm, the stepsize is increased to save computation time. Additionally, if the solution does not converge, the stepsize is halved until a minimum stepsize is reached. The program will then signai nonconvergence.

AUTO identifies bifurcation points and turning points by monitoring the Jacobian matrix at each solution and identi-
fying sign changes in the eigenvalues. Using bifurcation analysis, AUTO identifies these changes as limit points, bifurcation prints, or $\underset{\text { sopf }}{ }$ Bifurcations. AUTO continues on the main branch until a user specified number of points is reached or values of λ or u exceed user specified limits. AUTO has the capability to go back to the bifurcation points to compute the branches emanating from the bifurcation point. Additionally, AUTO can go back and compute the limit cycles that begin at the Hopf bifurcations. More information on the capabilities of AUTO can be found in the AUTO user manual (11).

IV. Model Development

Aircraft Description

The $\mathrm{F}-15 \mathrm{~B}$ aircraft, which is modelled in this research, is a two seat, high performance, supersonic, all-weather air-superiority fighter. The aircraft's primary mission is aerial combat, however, it can also be configured for ground attack. It is powered by twin Pratt and Whitney $F-100$ turbofan engines. The model developed for this research includes pitch and yaw thrust vectoring which a baseline F-15B does not have. The vectoring nozzles are assumed to have no effects on the aerodynamic characteristics or weight and balance of the $\mathrm{F}-15 \mathrm{~B}$. Appendix A provides the physical dimensions of the aircraft and weight and balance.

The aircraft's aerodynamic control surfaces are the ailerons, rudder, elevator. Thrust settings can be independently controlled for both right and left engines. For this research, the yaw and pitch angles of the nozzles can also be controlled. Several control characteristics of the F-15B will not be modelled to simplify the research. These include the effects of the Control Augmentation System (CAS), Aileron Rudder Interconnect (ARI), and speedbrake. The differential elevator deflection is also set at a constant gain times the aileron deflection. The F-l5 aero
coefficients modelled are for low speed flight and constant altitude. Therefore, flight conditions of 20,000 feet and low Mach numbers will be used.

Force and Moment Equations

The force and moment equations used ir this research are the body-axis force and moment equations used by Baumann (6:20-21) but modified to include forces and moments due to variable thrust, asymmetric thrust and thrust vectoring. These equations therefore have both aerodynamic and thrust components. The aerodynamic force and moment coefficients were modelled for the $\mathrm{F}-15$ by Baumann. He used a statistical software program to curve fit $\mathrm{F}-15$ aerodynamic data from - 20 degrees to 90 degrees angle of attack. These curve fits are fairly representative of the actual $F-15$ aerodynamic coefficients (23). Some amount of data smoothing can be expected, however, the general trends in the data are maintained. The details of his curve fitting techniques can be found in (6). At low angles of attack, the above coefficients are symmetric with respect to the lateral variables β, p, and r. However, asymmetries are present above 40 degrees angle of attack due to asymmetric shedding of nose vortices (22:3.4).

The thrust components are added to the aerodynamic coefficients to produce combined thrust/aerodynamic force and moment coefficients. The thrust contributions to the
modified force coefficients are found by determining the thrust in the body x, y, and z directions as a result of total thrust and any vectoring. The moments are found by determining the contribution by each engine in the body x, y and z direction and multiplying each by the appropriate moment arm to the center of gravity. Asymmetric thrust is modelled using the variables right engine thrust (T_{r}) and left engine thrust (T_{1}). Pitch vectoring is modelled using the variable $\delta_{p v}$ with a positive value causing the a nose up pitching moment (flow deflected upward). Yaw vectoring is modelled using the variable $\delta_{y v}$ with a positive value causing a yaw to the left (flow deflected left). The moment arm offsets are defined as $d_{T x} . d_{T y}$, and $d_{T_{2}}$. Fig. $4-1$ shows these variables.

Figure 4-1 Physical Description of Thrust Variables

Etkin (12) was used to verify Baumann's equations and the thrust effects. The resulting equations are:

$$
\begin{align*}
& C_{x}=C_{L}\left(\alpha, \delta_{0}\right) \sin \alpha-C_{D}\left(\alpha, \delta_{0}\right) \cos \alpha+T_{x} /(\bar{q} S) \tag{11}\\
& C_{y}=C_{y}\left(\alpha,|\beta|, \delta_{0}\right)+C_{y z}(\alpha) \delta_{z}+C_{y b r}(\alpha) \delta_{r} \\
& +\left[b / 2 V_{t r}\right]\left[C_{y r}(\alpha) r+C_{y p}(\alpha) p\right]+\Delta C_{y \cdot}(\alpha, \beta) \tag{12}\\
& +C_{y \Delta \Delta \theta}\left(\alpha, \delta_{\Delta}\right) \delta_{\Delta \varphi}+T_{y} /(\bar{q}, S) \\
& C_{z}=-C_{1}\left(\alpha, \delta_{0}\right) \cos \alpha-C_{p}\left(\alpha, \delta_{0}\right) \sin \alpha+T_{z} f(\bar{q} S) \tag{13}\\
& C_{1}=C_{1 \beta}(\alpha,|\beta|) \beta+C_{18 z}\left(\alpha, \delta_{0}\right) \delta_{z}+C_{18 r}\left(\alpha,\left|\delta_{r}\right|\right) \delta_{r} \\
& +\left[b / 2 V_{t r}\right]\left[C_{1 p}(\alpha) p+C_{1 r}(\alpha) r\right] \tag{14}\\
& +C_{18 \Delta \theta}\left(\alpha, \delta_{0}\right) \delta_{\Delta \varphi}+\Delta C_{1 \beta}(\alpha, \beta) \\
& +\left[T_{2 r} d_{T y}-T_{z 1} d_{T y}\right] /(\bar{q} S b) \\
& C_{m}=C_{m 0}\left(\alpha, \delta_{0}\right)+\left[\bar{c} /\left(2 V_{t r}\right)\right] C_{m q}(\alpha) q \tag{15}\\
& +\left[T_{x} d_{T_{2}}-T_{2} d_{T_{x}}\right] /(\bar{q} S \bar{c})
\end{align*}
$$

$$
\begin{align*}
& +\left[b / 2 V_{r r}\right]\left[C_{n p}(\alpha) p+C_{n r}(\alpha) r\right]+C_{n o \Delta e}\left(\alpha, \delta_{\Delta e}\right) \delta_{\Delta e} \tag{16}\\
& +\Delta C_{n \sharp}(\alpha, \beta)+\Delta C_{n} \cdot(\alpha, \beta) \\
& +\left[T_{y} d_{T X}-T_{x y} d_{T Y}-T_{x \mid} d_{T y}\right] /(\bar{q} S b) .
\end{align*}
$$

These coefficients are used in the equations of mo:ion.

Equations of Motion

The equations of motion for an airplane are celived from Newton's Law

$$
\begin{align*}
& \bar{F}=M \bar{a} \tag{17}\\
& \bar{N}=I \bar{\alpha} \tag{18}
\end{align*}
$$

where \bar{a} is the aircraft translational acceleration, $\bar{\alpha}$ is the aircraft rotational acceleration, M is the aircraft mass, I is the aircraft rotational inertia tensor, and \bar{F} and \bar{N} are the forces and moments acting on the aircraft. The result is a twelfth order system. However, by making the following assumptions, rigid aircraft, constant air density, constant gravity, and a flat earth, and by transforming the force and moment equations from the inertial frame to a frame fixed to the aircraft, the equations of motion are reduced from order twelve to order nine. The aircraft state can be described by the nine state variables ($\alpha, \beta, p, q, r, \theta, \phi, \psi, V)$. If the $x z$ plane is a plane of symmetry, the following equations are formed. Translational acceleration equations:

$$
\begin{align*}
\dot{\alpha}=q & +\left[-\left[\frac{\bar{q} S}{m V_{t r}} C_{x}-\frac{g}{V_{t r}} \sin \theta+r \sin \beta\right] \sin \alpha\right. \tag{19}\\
& \left.+\left[\frac{\bar{q} S}{m V_{t r}} C_{z}+\frac{g}{V_{t r}} \cos \theta \cos \phi-p \sin \beta\right] \cos \alpha\right] \sec \beta \\
\dot{\beta}= & -\left[\left[\frac{\bar{q} S}{m V_{t r}} C_{x}-\frac{g}{V_{t r}} \sin \theta\right] \sin \beta+r\right] \cos \alpha \\
& +\left[\frac{\bar{q} S}{m V_{t r}} C_{y}+\frac{g}{V_{t r}} \cos \theta \sin \phi\right] \cos \beta \tag{20}\\
& -\left[\left[\frac{\bar{q} S}{m V_{t r}} C_{z}+\frac{g}{V_{t r}} \cos \theta \cos \phi\right] \sin \beta-p\right] \sin \alpha
\end{align*}
$$

$$
\begin{align*}
\dot{V}_{t r}=V_{t r} & {\left[\left[\frac{\bar{q} S}{m V_{t r}} C_{x}-\frac{g}{V_{t r}} \sin \theta\right] \cos \alpha \cos \beta\right.} \\
& +\left[\frac{\bar{q} S}{m V_{t r}} C_{y}+\frac{g}{V_{t r}} \cos \theta \sin \cdot{ }^{7} \sin \beta\right. \tag{21}\\
& \left.+\left[\frac{\bar{q} S}{m V_{t r}} C_{z}+\frac{g}{V_{t r}} \cos \theta \cos \phi\right] \sin \alpha \cos \beta\right] .
\end{align*}
$$

Rotational acceleration equations:

$$
\begin{align*}
\dot{p}= & {\left[-\left[\frac{I_{z}-I_{y}}{I_{x}}+\frac{I_{x z}^{2}}{I_{x} I_{z}}\right] q r+\left[1-\frac{I_{y}-I_{x}}{I_{z}}\right] \frac{I_{x z}}{I_{x}} p q\right.} \tag{22}\\
& \left.+\frac{\bar{q} S b}{I_{x}}\left[C_{1}+\frac{I_{x z}}{I_{z}} C_{z}\right]\right] \cdot\left[1-\frac{I_{x z}^{2}}{I_{x} I_{z}}\right]^{-1} \\
\dot{q}= & \frac{\bar{q} S \bar{c}}{I_{y}} C_{m}+\frac{I_{z}-I_{x}}{I_{y}} p r+\frac{I_{x z}}{I_{y}}\left(r^{2}-p^{2}\right) \tag{23}\\
\dot{r}= & {\left[\left[\frac{I_{x z}^{2}}{I_{x} I_{z}}-\frac{I_{y}-I_{x}}{I_{z}}\right] p q-\left[1+\frac{I_{z}-I_{y}}{I_{x}}\right] \frac{I_{x z}}{I_{z}} q r\right.} \tag{24}\\
& \left.+\frac{\bar{q} S b}{I_{z}}\left[\frac{I_{x z}}{I_{x}} C_{1}+C_{z}\right]\right] \cdot\left[1-\frac{I_{x z}^{2}}{I_{x} I_{z}}\right]^{-1} .
\end{align*}
$$

The aircraft orientation or Euler angle equations are:

$$
\begin{align*}
& \dot{\theta}=q \cos \phi-r \sin \phi \tag{25}\\
& \dot{\phi}=p+(q \sin \phi+r \cos \phi) \tan \theta \tag{26}\\
& \dot{\psi}=(q \sin \phi+r \cos \phi) \sec \theta .
\end{align*}
$$

The yaw angle is decoupled from the rest of the equations via the definition of the Euler angles. The aircraft is first rotated through the yaw axis, then the pitch axis and then the roll axis. The yaw rotation does not change the direction of the gravity vector since the z axis of the
aircraft and earth are initially aligned. The result is an eighth order model without the $\dot{\psi}$ orientation equation. The above equations are in the form of Eqn (4) with the state vector u - $[\alpha, \beta, p, q, r, \theta, \phi, V]^{\top}$ and the variable parameters $\lambda=\left[\begin{array}{lllll}\delta_{0}, & \delta_{r} & \delta_{c} & \mathrm{Tl}, \mathrm{Tr}, & \delta_{p v}, \\ \delta_{r v}\end{array}\right]^{\mathrm{T}}$. The purpose of this research is to find the solutions to this set of equations that satisfy Eqn (3).

Model Modifications
In addition to the modifications due to the thrust variables, one curve fit in the Baumann model was revised. Initial elevator sweeps of the Baumann model identified a loss of longitudinal stability at low angles of attack and then a regain of stability shortly later. This loss of stability did not match flight test data. The curve fits for the longitudinal aerodynamic coefficients were compared to the aero database : 0 see if they were in error. The pitch damping derivative was identified as the cause of the problem. The curve fit of C_{mq} in Baumann's model was inaccurate at both low angles of attack and above 70 degrees. A new curve fit was developed to replace the incorrect equation for $C_{m q}$. Fig. 4-2 compares the original and modified curve fits for C_{mq} and also provides an idea as to how the aero data is modelled.

Figure 4-2 Comparison of the Revised and Baumann CMQ

V. Results

The main point of this research was to see the effects of thrust, thrust vectoring, and asymmetric thrust on the spin characteristics and spin recovery of the F-15. Therefore, a baseline of the global spin characteristics of the F-15 had to be established to compare the results against. The Baumann model was initially run, however some irregularities in the data at low alpha necessitated changes in the model. The model used in this research is a modified Baumann model. The new model is first compared to the old model to see the effects of the changes. The new model will then be further evaluated to define the global F-15 spin characteristics. Thrust levels will be varied to see how they affect these spin characteristics. Asymmetric thrust will be introduced to see if it can lead to spins and to see if it can be used to recover from flat spins. Finally, pitch and yaw thrust vectoring will be used to see how they can aid in the recovery from flat spins.

The general technique used in the investigation was to find the global effects of varying the parameter of interest, and then to concentrate on the stable flat spin regime. Additional bifurcation diagrams were developed from a starting point in the stable flat spin region. Time histories are shown in some cases to provide a better understanding of the $\mathrm{F}-15$'s behavior.

Comparison with Unmodified Model

The first run in this research was an elevator sweep from a starting point calculated by Baumann (6:32-34). Baumann used a thrust setting of 83001 bf in his research because it is the thrust setting for trim conditions at 0.6 Mach and 20,000 feet (6:19). The $\alpha-6$, bifurcation diagram from this elevator sweep indicated a small area of instability bounded by Hopf points at a fairly low angle of attack. As discussed earlier, an incorrect curve fit for $C_{m q}$ was identified as the cause of the instability and also showed that the original curve fit did not represent the high angle of attack data. A new curve fit was found for $C_{m q}$ and was incorporated into the model. Again an elevator sweep was run from the original starting point. The $\alpha-8$, bifurcation diagram for the modified model did not have the small unstable area. A comparison of the Baumann and modified model in the high a regime was then accomplished using a rudder sweep from a starting point near full elevator deflection. The original elevator sweep did not continue into the spin region and therefore Baumann found that rudder sweeps can be used to reach this area ($6: 47$). Since the new curve for $C_{m q}$ is not as stable in pitch damping at high angles of attack as the old model (see Fig. 4-2), the new model should show a smaller region of stability in the spin region. The $\alpha-\delta_{r}$ bifurcation diagram of the unmodified model (Fig. 5-1) shows
a small region of stable spins with full elevator deflection. The $\alpha-\delta_{\text {, }}$ diagram using the new model (Fig. 5-2) shows the same tracing of equilibrium solutions as Fig. 5-1. However, the stable portion of the branch is no longer present. This matches the expected results that the equilibrium would be less stable. A stable limit-cycle may exist in the modified model in the vicinity of the stable area of the unmodified model. However, the rudder sweep was not able to find these limit cycles because there are no Hopf points present. With full elevator deflection, the new model is similar to the unmodified model except for the loss of the stable spin branch.

Figure 5-1 Baumann Model Rudder Sweep

Figure 5-2 Revised Model Rudder Sweep

Baseline Model Spin Characteristics

The previous comparison was done by holding the elevator and ailerons constant and varying the rudder. This introduces asymmetries into the airplane aerodynamics by varying the rudder. A different method of producing bifurcation diagrams is to hold neutral rudder and aileron and vary the elevator. This method provides a global view of the $\mathrm{F}-15$ longitudinal motion in a symmetric configuration as a function of elevator deflection. Any asymmetries identified would therefore be the result of aerodynamic asymmeties and not the result of rudder or aileron inputs. Rudder sweeps are still necessary, however, to provide starting points for high angle of attack branches. Fig. 5-3 is the baseline
$\alpha-8$. bifurcation diagram of the $\mathrm{F}-15 \mathrm{~B}$ for a thrust level of 8300 lbf. This diagram shows only the equilibrium solutions found between the F-15 elevator deflection limits. The entire continuation diagram can be found in Appendix C, Fig. C-1.

Several equilibrium branches are identified in Fig. 5-3. The low angle of attack stable branch loses stability at 6 . $=-19.3$ degrees and identifies the onset of wing rock. The unstable branches at alpha $=36$ degrees and between alpha $=$ 40 degrees and 50 degrees identify spirals. The branch found between alpha $=64$ degrees and 84 degrees is the spin branch. It contains both stable and unstabie equilibrium and limit-cycle solutions. The stable portion of the branch between $\delta_{0}=-21.4$ degrees and -15.4 degrees identifies a stable right spin. It is bounded by stable limit-cycles that eventually become unstable. The unstable equilibrium branch connected to the stable branch has a maximum value of the unstable eigenvalue equal to $0.10683 \neq 2.4174 i$ at $\delta_{0}=0$ degrees. This is important since the positive eigenvalue is a small number. This means that the loss of stability along the branch will most likely not be an immediate event (i.e. long transient). The small stable region at $\delta_{\text {. }}=-25$ degrees identifies a stable left spin. It gains stability via a turning point and loses stability via a Hopf bifurcation and with stable limit-cycles. The larger area of right

spin with symmetric controls can be explained by the asymmetric yawing moment above alpha $=4 C$ degrees (22:3.4). The asymmetry favors a right yaw and therefore, a larger right spin region. Of additional interest is that the stable spin branch lies directly above point were wing rock begins. The F-15 could theoretically encounter wing rock and then jump to the stable spin branch.

The F-15 flight manual recommends several methods to recover from spins (34:6-7). The highly oscillatory spin can be recovered by neutralizing the controls. Stable flat spins can be recovered by applying aileron in the direction of the spin. As discussed earlier, by applying aileron in the direction of the spin, a cross coupling inertia effect acts in the direction opposite the yaw. The manual also states that rudder deflection in either direction has little effect on spin recovery. This was also discussed earlier and is a result of the rudder being washed out by the wake off the wings and fuselage. These recovery techniques were applied in a simulation of the stable flat spin at $\delta_{0}=$ -19.14 degrees to see if the model corresponds to actual flight behavior. The selection of $\delta_{4}=-19.14$ degrees as a starting point is motivated by the fact that it is near the center of the stable branch and corresponds to the onset of wing rock at low α. This starting point will be used in many of the bifurcation diagrams in the following sections.

Fig. 5-4 shows the α - time simulation using elevator for recovery. If the elevator is neutralized, the $F-15$ will enter an oscillatory spin at a lower angle of attack. If the elevator is deflected to a negative full deflection, the F-15 enters an oscillatory spin at a higher angle of attack. The $\mathrm{F}-15$ will not zecover from the flat spin in a reasonable time using elevator alone. Comparing Fig. 5-4 to Fig. 5-3, the oscillatory spins begin at the Hopf points bounding the stable region. These oscillations are centered on the unstaole equilibrium branches and can be classified as unstable oscillations because they continue to grow.

Figure 5-4 Simulation of Spin Recovery Using Elevator

Fig. 5-5 is the simulation using rudder for recovery. A fully deflected antispin rudder recovers the $\mathrm{F}-15$ to wing rock in 13 seconds. A fully deflected prospin rudder drives the $\mathrm{F}-15$ into an unstable oscillatory spin that recovers the F-15 to wing rock in 55 seconds. In a real world situation the F-15 would not have 55 seconds to recover from a flat spin, however this diagram is valuable in revealing the true nature of the oscillatory spin as being unstable. The effectiveness of the rudder to recover from a flat spin in this simulation is contrary to the statement in the $\mathrm{F}-15$ flight manual.

Figure 5-5 Simulation of Spin Recovery Using Rudder

Fig. 5-6 is the recovery attempt using ailerons. fileron in the direction of the spin actua:ly increase the angle of attack of the spin while aileron opposite the spin reduces the angle of attack. The $\mathrm{F}-15$ should not be able to recover using ailerons alone. The results of this simulation are also contrary to the statements in the F-l5 flight manual, at least for $\delta_{.}=-19.14$ degrees and a thrust level of 8300 lbs.

Figure 5-6 Simulation of Spin Recovery Using Ailerons

These discrepancies were investigated by looking at the equations for the aero coefficients due to the aileron and
rudder deflections and seeing if they were the cause. The equations of motion were double checked to see if they were correct. Possible cross coupling effects were investigated by looking at the stable spin angular velocities.

The rudder effectiveness is caused by the curve fit for $C_{\text {nor }}$. The curve fit is dependent on $\delta_{r}, \alpha, \beta$, and δ, with generally any value of β and negative values of δ. increasing the rudder effectiveness at high α. Unfortunately, the curve fit makes the rudder deflections twice as effective at large negative values of δ, than aerodynamic data indicates. Therefore, the model is somewhat inaccurate in the effects of rudder at high angles of attack. The starting points used for the continuation of the high angle of attack branches for the α - δ, bifurcation diagram are still accurate since at these points the rudder in undeflected. The ineffectiveness of the ailerons can be explained as a cross coupling effect in the model. Table 1 shows the values of p, q, and r in the stable spin regime for $\delta_{0}=$ -19.14 degrees.

Table I. Stable Spin Angular Velocities

$\mathrm{p} \mathrm{rad} / \mathrm{sec}$	$q \mathrm{rad} / \mathrm{sec}$	$\mathrm{r} \mathrm{rad} / \mathrm{sec}$
0.6119	-0.0874	1.932

Since $I_{x}-I_{y}$ for the $F-15$ is negative, it couples with a positive p, and negative q to drive the yaw rate - see Eqn (1). Therefore, in the right flat spin region being investigated, prospin aileron deflections are not effective in recovering from the spin and actually drive the yaw rate. Deflections opposite the spin can slow the spin rate, however, there is not enough control authority to completely stop it. This anomaly is therefore a consequence of the spin characteristics and not a problem with the model.

Since the main investigation in this research is thrust effects, the discrepancy due to rudder and aileron is noted but will not be further investigated. The model will be kept in a symmetric δ_{r}, δ_{a} configuration during investigation of the thrust effects and therefore these discrepancies will not enter into the rest of the results. The coupling effects will be important during pitch vectoring, and will be discussed more in that section.

Throttling

The effects of varying the thrust level in the model are discussed next. First, throttling was run from the original level of 8300 lbf to see how the model reacted at low angles of attack. The elevator deflection was set at -19.14 degrees with neutral rudder and ailerons. The a-T bifurcation diagram is shown in Fig. 5-7. The diagram is interesting in that α does not change with thrust until the
thrust to weight ratio approaches one. At 37,000 ibs thrust, the diagram hits a wall and shoots to $\alpha=90$ degrees. For thrust to weight ratios greater than 1 , the model is in a constant acceleration and there could be no solutions that would satisfy Eg̣n (3). From this diagram, however, two starting points were picked to continue up to high angles of attack using rudder sweeps.

Figure 5-7 Low Alpha Engine Throttling

The two values selected for continuation were 0 lbf and 29200 lbf. The zero thrust value was picked to show a baseline of the spin region with no thrust. The thrust value of 29200 lbf was selected since it is close to the full military power rating (non-afterburning) of the PW F-100
engines. Rudder sweeps were again used to provide high angle of attack starting points for the elevator sweeps. The longitudinal motion, symmetric spin characteristics were then found by doing elevator sweeps with the thrust held at 0 lbf Fig. 5-8) and at 29200 lbf (Fig. 5-9). The full continuation diagrams of these elevator sweeps can be found in Appendix C.

Comparing the three elevator sweeps for different thrust levels (Figs. 5-3, 5-8, and 5-9) the stable right spin branch decreases in size with thrust. This result can be partly attributed to a nose up moment due to thrust. The engines are located below the aircraft's center of gravity and therefore a pitch-up moment accompanies increases in thrust. This increases the value of q and the cross coupling effect of q and r would bring about an antispin moment. A better understanding of this phenomenon is achieved by creating a bifurcation diagram of α - T from a starting point in the stable spin region. Fig. 5-10 shows that thrust decreases the angle of attack and eventually produces limit cycle behavior with high thrust levels, however it will not bring the plane out of the spin. A simulation was run to show this effect and is shown in Fig. 5-11. The limit cycle behavior becomes apparent in this time history, and as expectea, the airplane remains in a

mildly oscillatory spin.
For an $\mathrm{F}-15$, higher thrust levels produce spin regions with smaller stable branches. Additionally, higher thrust levels produce spins at lower angles of attack for a given elevator deflection. These effects can aid in the recovery from spins, however, used alone increasing thrust cannot bring the $\mathrm{F}-15$ out of a spin. Grafton (13) came to this same conclusion in her research. She determined that thrust effects are generally small, but have a generally favorable effect on the number of turns required to recover from a relatively nonoscillatory spin.

Asymmetric Thrust

The $\mathrm{F}-15$ has the capability of providing direct yaw moments by using asymmetric thrust. In a spin, the engines can theoretically be throttled to provide an antispin moment. In real world situations, asymmetric thrust usually occurs through the inadvertent flameout of one engine. Both of these cases will be looked at to see how asymmetric thrust can lead to spins, and to see how it can be used to recover from them.

Starting from a low angle of attack equilibrium state and a thrust of 8300 lbs , each engine was throttled and $\alpha-$ T bifurcation diagrams were examined. Figs. 5-12 and 5-13 show that the equilibrium branch continued to the high angle of attack regime through the application of both negative
and positive thrust. The negative thrust is unrealistic but does provide a pathway to high α solutions in realistic asymmetric thrust regions. The low angle of attack branch remains stable throughout the range of asymmetries and therefore, jumps to the spin region via limit points should not be expected due to asymmetric thrust alone. A large perturbation may push the $\mathrm{F}-15$ away from the stable branch and cause an attraction to the stable high a solutions. Fig. 5-12 contains a large region of stable equilibria between $\alpha=68$ degrees and 80 degrees and identifies a right flat spin. This corresponds to the large region of stable right spin found in the symmetric bifurcation diagrams. In this region, $T_{1}>T_{r}$ and a positive yaw moment results. The positive yaw moment drives the plane into the right spin. A left spin branch is also present for an asymmetry of $T_{r}>T_{1}$ but contains no stable branch. This branch corresponds to the left spin found in the symmetric bifurcation diagrams. Fig. 5-13 mirrors Fig. 5-12 but also identifies a small stable left spin branch at $T_{1}=-1000 \mathrm{lbf}$. Although this thrust setting is unrealistic in the real world, it shows that an asymmetry of around 5000 lbf should be able to produce a stable left flat spin. The two figures also identify a small intermediate stable spin region between $\alpha=50$ degrees and 58 degrees that is bounded by Hopf points.

Analysis of the effects of asymmetric thrust due to a flameout were done using elevator sweeps for both right and left engine flameouts from an initial thrust of 8300 lbf. Figs. 5-14 and 5-15 are the $\alpha-6$. bifurcation diagrams of a right engine flameout and a left engine flameout. The full continuation diagrams can be found in Appendix C. At low angles of attack, the onset of wing rock is actually delayed by the engine flameout. Thus, the likelihond of the F-15 jumping to the spin branch from wing rock is not increased by an engine flameout. However, fig 5-14 shows a large stable spin region extending from $\delta_{0}=-15$ degrees to $\delta_{0}=13$ degrees. The branch loses stability through Hopf bifurcations at both ends. The positive yawing moment due to the thrust asymnetry creates a much larger stable right spin branch at higher values of δ. than the symmetric $\alpha-\delta$. bifurcation diagram. Additionally, the small left spin branch virtually vanishes from the diagram. Fig. 5-15 should produce an opposite effect. The stable right spin branch stretches from $\delta_{0}=-26.5$ degrees to $\delta_{0}=-22$ degrees which is smaller and at lower values of δ, than the symmetric diagrams. The left spin branch also becomes more prevalent. Thus, engine flameouts can be either helpful or harmful, depending on the direction of spin and the engine that flames out.

The yawing moment provided by a thrust asymmetry can be

used to recover from spins. Looking back at Fig. 5-12, the equilibrium branch turns back when the right engine thrust is greater than 15000 pounds. Any setting greater than 15000 lbs. "should" bring the F-15 right back to.the stakle low angle of attack equilibrium. A simulation was run to see the time history of two imposed asymmetries. The time history shows that the plane enters a unstable limit cycle for a thrust setting of 12000 lbf . A full right engine thrust setting of 25,000 lbf was then tried in the simulation. Fig. 5-16 shows that using the higher thrust asymmetry, the F-15 pushes through the limit cycle and reco:ers to the low angle of attack stable equilibrium.

Figure 5-16 Asymmetric Thrust Spin Recovery

This recovery is in a timeframe that could realistically recover the $\mathrm{F}-15$ from the spin (13 seconds).

Asymmetric thrust settings can aid in recovering from spins, however, the same asymmetries that can aid the recovery, can make recovery more difficult if the wrong engine flames out in the spin.

Thrust Vectoring

The capability to vector thrust on an F-15 is currently available only on the $\mathrm{F}-15$ STOL demonstrator. This aircraft has modified nozzles to provide pitch vectoring, but no yaw vectoring capability exists. Pitch and yaw vectoring will be investigated to see how they can influence spin recoveries if a baseline F-15 were fitted with pitch or yaw vectoring nozzles.

pitch Vectoring

Pitch vectoring can be thought of as an automatic elevator, providing the pilot the capability to control the pitch rate with the engine. The pitch moment created by vectoring the engine exhaust is dependent on the engine thrust and the angle of vectoring. Additionally, vectoring the thrust decreases the force in the x direction and changes the forces in the z direction. The effects of pitch vectoring in aiding the recovery from spins are expected to be small, since the moment produced will not oppose the large yaw
angular momentum. Some coupling effects will possibly be helpful in aiding the recovery and the nose down moment should lower the angle of attack and make the aerodynamic controls more effective. Additionally, a nose up moment could produce a deeper flat spin.

An $\alpha-\delta_{p v}$ bifurcation diagram was created for each of two different thrust levels (8300 lbs and 29200 lbs) starting from $\delta_{4}=-19.14$ degrees in the stable right $f l a t$ spin region. Figs. 5-17 and 5-18 show that a nose down pitching moment ($\delta_{p v}<0$) will cause the $\mathrm{F}-15$ to remain at approximately the same angle of attack, while a nose up pitching moment ($\delta_{p v}>0$) will bring about higher angles of attack. The nose down moment will also bring about a loss of stability through a Hopf bifurcation. The higher thrust level will cause the limit cycles to appear at a much lower pitch rector angle. The lower angle of attack ard loss of stability could possibly lead to recovery. Additionally, limit cycle behavior appears in the nose up pitch vector for 29200 lbs. These diagrams were not very helpful in trying to understand the dynamics of the pitch vectoring, so additional diagrams plotting p, q, and I versus $\delta_{p v}$ were made. Figs. 5-19 and 5-20 show that coupling occurs due.to the pitch vectoring. The $p-q$ coupling was mentioned in previous discussions as the cause of the δ. anomaly. Since p is positive and q is negative, the coupling term drives r

Figure 5-17 Flat Spin Pitch Vectoring, $T=8.300$ 1us

Figure 5-18 Flat Spin Pitch Vectoring, $T=292001 \mathrm{bf}$

Figure 5-19 Angular Velocities, Pitch Vect, $T=8300$ lbf

Pitch Thrust Angle
Figure 5-20 Angular Velocities, Pitch Vect, $T=29200$ 1bf
into the spin direction. If either term changed signs, the coupling would provide an antispin term in \dot{r} and possibly recover the F-15 from the spin. Nose down pitch vectoring actually causes q to become more negative and drives the prospin yaw rate even higher. A nose up pith vector brings q closer to zerc and in the case of Fig. 5-20 actually makes q positive. With the positive q, an antispin coupling results and the $F-15$ should recover from the spin. This is not intuitive to a pilot since the usual procedure for spin recovery is to release back pressure on the stick which in turn causes a nose down pitching moment. A simulation was run to see if in fact this coupling takes place. Fig. 5-21 doesn't show that a nose up moment will promote the recovery from a spin since the angle of attack remains around 90 degrees. Although Fig. 5-21 shows that the F-15 remains at 90 degrees, Fig. 5-22 qualifies this by showing that a:l yaw rotation stops. The $\mathrm{F}-15$ is in a deep stall that can be recovered by vectoring the nozzle the other direction. Applying nose down pitch vectoring as an initial command actually increases the yaw rate and produces an oscillatory spin. Again, in the real world an $F-15$ wouldn't have 60 seconds to recover from a flat spin, but these simulations do show that a nose up pitch vector can theoretically bring about a recovery. Pitch vectoring is therefore useful in recovering the F-15 from spins but not in an intuitive way.

Figure 5-21 Simulation of Pitch Vectoring in a Flat Spin

Yaw Vectoring

Yaw vectoring can also be thought of as an automatic control, providing the pilot control of the yaw moments with the engines. With yaw vectoring, the capability exists to directly oppose the angular momentum in a spin. Thus, yaw vectoring is expected to be the most effective use of thrust to recover from a spin. The effectiveness of yaw vectoring to recover from a spin is directly proportional to the thrust level and the angle of deflection. At low thrust levels, the moment created by vectoring the thrust may be small, even with a large vectoring angle. At high thrust levels, only a small angle may be necessary to recover from the spin.

The global effect of yaw vectoring was found by starting at a low angle of attack equilibrium point and varying the yaw angle for two thrust settings. Figs. 5-23 and 5-24 are the $\alpha-\delta_{y v}$ bifurcation diagrams. The diagrams continue up to the high angle of attack regime where both left and right spin branches are found. Looking at the low angle of attack solutions, the equilibrium solutions reach a turning point at a relatively small yaw vector. The $\mathrm{F}-15$ may depart controlled flight at the limit point and jump to the spin branch directly above it. Thus, yaw vectoring capabilities can be dangerous at low angl's of attack.

Looking at the high a branches, the branch with the
large stable portion is the right spin branch. Since a right spin is the only possible spin in this diagram for an undeflected flow, it will be the main topic of discussion. Both diagrams show that an antispin yaw vector ($\delta_{\mathrm{yv}}>0$) will drive the $\mathrm{F}-15$ out of the stable spin and into an oscillatory spin at the Hopf bifurcation. Further yaw vectoring will bring the $F-15$ to the previously identified small stable branch at $\alpha=50$ degrees. This is surrounded by additional limit cycles. With enough yaw vectoring, the F-15 will eventually make it through the limit cycles and down to the stable low a equilibrium branch. A prospin yaw vector will drive the $\operatorname{F-l5}$ into a deeper, oscillatory flat spin. Although the diagrams are fairly similar in structure, the amount of vectoring necessary to drive the $\mathrm{F}-15$ out of the spin is much less with higher thrust level's. A simulation was run to see how yaw vectoring can bring the F-i5 out of the spin. Fig. 5-25 shows that for a small yaw vector (5 degrees), the $\mathrm{F}-15$ begins to oscillate around the Hopf point discussed earlier and eventually is attracted to the low a stable branch. With a 10 degree yaw vector, the F-15 is driven straight down to the low a stable branch. An even larger yaw vector of 20 degrees brings the $\mathrm{F}-15$ down to the low a stable branch even faster, however, without correction, the $\operatorname{F-15}$ will enter a spin in the opposite direction. Looking back at Fig. 5-23 verifies that this

would indeed happen. The low angle of attack stable branch turns at 16 degrees and the only solution would be the left spin. Fig. 5-26 gives an appreciation as to how quick the rotation in the opposite direction begins if the yaw vector is not removed when the $\mathrm{F}-15$ approaches l ow angle of attack flight.

Figure 5-25 Simulation of Yaw Vectoring in a flat Spin

As expected, yaw vectoring can be very effective in recovering the $\mathrm{F}-15$ from a flat spin. Burk (8) also came to this result in his early research. However, yaw vectoring can lead to jumps to spins if used at low alpha. Additionally, care must be taken to remove yaw vectoring as the $\mathrm{F}-15$ recovers or an inadvertent spin in the opposite direction
may be entered.

Figure 5-26 r vs Time in Yaw Vectoring Simulation

Bifurcation analysis is a powerful tool in the analysis of nonlinear aircraft behavior. If it is used in conjunction with a realistic model of an aircraft's inertia and aerodynainic coefficients and some trial simulations, it can provide a qualitative idea of the nonlinear behavior of the aircraft. From a single starting point, it can be used to map out an entire spectrum of possible aircraft motions. This study took a fairly realistic model of an $\mathrm{F}-15$, modified it with nozzles that have never been used on an operational $\mathrm{F}-15$, and mapped out how they could be used to help recover from a flat spin. Additionally, spin characteristics due to thrust and thrust asymmetries were identified. The following conclusions were formed from this research:

1. The F-15 model designed by Baumann is a fairly realistic model of the F-lE's actual behavior. However, the effectiveness of the rudder at high angles of attack is overestimated in the model. Recovery from the principal spin region identified in the research does not follow the recommended course of action of applying ailerons in the direction of the spin. The model therefore has some shortcomings that create unrealistic aircraft behavior.
2. Thrust affects the spin characteristics of the $\mathrm{F}-15$ by changing the size and location of the stable spin
branches. Additionally, higher levels of thrust make thrust vectoring more effective. Full thrust alone cannot recover the F-15 from a spin, but it can aid other methods of recovering.
3. Asymmetric thrust can be used to recover the $F-15$ from a flat spin. The same moments that make thrust asymmetries useful can also make spins more difficult to recover from if the wrong engine flames out. Additionally, thrust asymmetries do not lead to jumps to spins and actually may delay the onset of wing rock.
4. Pitch vectoring can be used in a nonintuitive manner to bring about the recovery from a flat spin. Most pilcts would argue that a nose up moment would probably deepen a spin, however this research shows that just the opposite occurs. Application of a nose up moment reduces the yaw rate and results in a deep stall which can be more easily recovered from.
5. Yaw vectoring shows to be the most promising method of spin recovery. However care must be taken to remove the yaw vector upon recovery or an inadvertent spin in the opposite direction can occur. The use of yaw vectoring at low α can lead to jumps to spins due to limit point behavior and therefore should be avoided.
[^0]The following are recommendations for future research that were identified while pursuing this research:

1. Use rotary balance data in the model. Many previous studies of spin behavior used rotary balance data in their models. F-l5 rotary balance data is available but was not used in this study $(3,4)$. This data is nonlinear in angular velocity and more correctly characterizes the actual aerodynamics in a spin. Discrepancies between flight test data and predicted behavior identified in this research may be explained away using the rotary balance data.
2. Plug the thrust vectoring angles into a control system to see how it can be used to minimize wing rock. This offers an ideal method to help keep control of the $\mathrm{F}-15$ at high angles of attack by not having to rely on aerodynamic surfaces.
3. The F-l5 used in this study was loaded symmetrically. In the real world, the $\mathrm{F}-15$ is often flown with an asymmetric load of fuel or the weapons. This is a potential cause of many departures in the F-15 and bifurcation theory can be used to better characterize the mechanisms of these departures. Guicheteau (16:7) has applied this in his study of the Alpha Jet.
4. Include the contribution of gyroscopic torques due to the engines. This analysis assumes that they are zero. Ir reality, they will influence the spin behavior of the

F-15. Guicheteau (16:7) also applies this to the Alpha Jet.
5. The model has an inaccuracy identified $\left(C_{n 8 r}\right)$ and may contain more that were not identified in this research. Therefore, a thorough refinement of the model's curve fits could make it more realistic in the high a regime.
6. Apply bifurcation theory to one of the new designs (ATF, $B-2, C-17$) using wind tunnel data to help develop their flight test program or verify flight test results.

The physical dimensions and weight and balance data for the $F-15 B$ is listed in Table V. The data for the $F-15$ was obtained from Beck (7) and (23).

Table II. Physical Characteristics of the F-15B

```
Wing
    Area (Theoretical) 608 sq ft
    Aspect Ratio 3.01
    Airfoil
        Root NACA64006.6
        Xw 155 NACA64A(x)04.6 (a = 0.8 Mod)
        Tip
    Span
    Taper Ratio
    Root Chord (Theoretical)
    Tip Chord
    Mean Aerodynamic Chord
    Leading Edge Sweep Angle
    25% Chord Sweep Angle
    Dihedral
    Incidence
    Twist at Tip
    Aileron Area
    Flap Area
Speed Brake - Area 31.5 sq ft
Control Surface Movement
    Aileron
    Speedbrake
    Flap
    Horizontal Tail
    Rudder
Vertical Tail
    Area ('iheoretical Each)
    Rudder Area (Each)
    Syan
    Aspect Ratio
    Root Chord
    Tip Chord
    Airfoil - Root
    NACA64A(x)04.6 (a = 0. 
    42.8 ft
    0.25
273.3 in
68.3 in
191.3 in
45 degrees
38.6 degrees
    A
    -1 degrees
None
    None
    26.5 sq ft
35.8 sq ft
```

Aileron
Speedbrake
Flap
Horizontal Tail
Rudder
Vertical Tail
Area ('theoretical Each)
Rudder Area (Each)
Syan
Aspect Ratio
Root Chord
Tip Chord
$+/-20$ degrees
45 degrees up
30 degrees down
29 degrees down, 15 degrees up
+/- 30 degrees

```
62.6 sq ft
10.0 sq ft
10.3 sq ft
1.70
115.0 in
30.6 in
NACA0005-64
```

```
        - Tip NACAOOO3.5-64
    Taper Ratio
    0.27
    Leading Edge Sweep Angle
    25% Chord Sweep Angle
    Mean Aerodynamic Chord
    Cant
    Length (.25cw to . 25ch)
    36.6 degrees
    29.7 degrees
    81.0 in
    2 degrees out
    241.0 in
Wetted Area
        Fuselage
        Nozzles
        Horizontal Tail
        Vertical Tail
        Wing
        Total Area
    1405 sq ft
    53 sq ft
    216 sq ft
    257 sq ft
    698 sq ft
    2629 sq ft
Engine Data (each)
        Non-Afterburning Thrust 14,871 1b
        Afterburning Thrust
        23,810 1b
        Y Direction C.G. Offset
        +/- 25.5 in
        Z Direction C.G. Offset
            0.25 in
        Nozzle Pivot C.G. Offset -20.219 ft
Miscellaneous Data
        Aircraft Length
    63.8 ft
        Aircraft Height
        Aircraft Volume
        18.6 ft
        1996 cu ft
        Aircraft Gross Weight
        37000 lbs
        G.G. Station X Direction
        557.173
        v direction
        z Direction
0.0
116.173
Inertia Data
    Ix 25480 slug-ft }\mp@subsup{}{}{2
    Iy }166620\mathrm{ slug-ft }\mp@subsup{}{}{2
    Iz }186930\mathrm{ slug-ft }\mp@subsup{}{2}{
    Imz -1000 slug-ft2
```

The inertia values are for a basic F-15 with 4 AIM- ${ }^{1}$ F missiles, ammo, 50% fuel and gear up.

C CAPTAIN ROBERT J. MCDONNELU AFIT GAE-90D MASTERS THESTS

THIS COMPUTER PROGRAM SOLVES THE NONLINEAR DIFFERENTIAL EqUATIONS OF MOTION FOR THE F-15B AIRCRAFT. IT IS USED AS AN ANALYTICAL TOOL IN THE SEARCH OF HIGH ANGLE OF ATTACK PHENCMENA (I. E. FLAT SPINS). THE PROGPAM IS CAPABLE OF VARYING ELEVATOR, AILERON, AND RUDDER DEFLECTIONS, ENGINE THRUST VECTOR (PITCH AND YAN), PORT AND STARBOARD ENGINE THRUST, AND TOTAL THRUST.

LAST EDITED ON 24 OCT 1990
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION W(300000), IW(1000)
OPEN(UNIT=3,FILE='fort.3')
OPEN(UNIT=4,FILE='fort.4')
OPEN(UNIT=7,FILE='fort.7')
OPEN(UNIT=8,FILE='fort.8')
OPEN(UNIT=9, FILE=' fort. $\mathbf{9}^{\prime}$)
OPEN(UNIT'=10, FILE=' fort. 10^{\prime})
OPEN(UNIT=12, FILE='cs')
OPEN(UNIT=13, FILE='cts')
REWIND 7
REWIND 8
REWIND 9
REWIND 10
REWIND 3
RENIND 4
REWIND 12
RENIND 13
CALL AUTO - CONTINUATION \& BIFURCATION LOCATION SUBROUTINE
CALL ALTO(W,IW)
STOP
END
SUBROUTINE FUNC(NDIM,NPAR,U,ICP,PAR,IJAC,F,DFDU,DFDP)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /KS/ Kl, K5,K7, K8, K9,KlO,Kl2,Kl3, Kl4, Kl5, Kl6, Kl7
COMAON /ACDATA/ EWING, OWING,SREF,RHO,RMHSS
DOUBLE PRECISION K1, K5, K7, $\mathrm{K} 8, \mathrm{~K} 9, \mathrm{KlO}, \mathrm{Kl} 2, \mathrm{Kl} 3, \mathrm{Kl} 4, \mathrm{Kl} 5, \mathrm{Kl} 6, \mathrm{Kl} 7$
COMMON /SEIZE/ CX,CY,CZ,CLM,OM,CDM
COMMON /SEIZET/ CXT,CYT,CZT,CLMT,CMMT,CAMT

DIMENSION DFDU(NDIM,NDIM), DFDP(NDIM,NPAR), DEIFI(8), $+\quad$ DELF2(8),U(NDIM), PAR(10),F(NDIM),DX(8)

INITIALIZE SOME CONSTANTS THAT ARE PASSED THROUGH THE COMMON BLOCK ACDATA

DATA IS FROM MCAIR REPORT草 A4172 AND AFFTC-TR-75-32 F-15A APVROACH-TO-STALL/STALL/POST-STALL EVALUATION
bwing - A/C WINGSPAN, FT
CWING - A/C MEAN AERODYNAMIC CHORD, FT
SREF - A/C WING REFERENCE AREA, SQ FT
RHO - AIR DENSITY AT 20000 FT ALTITUDE, SLUG/FT^3
RMASS - A/C MASS, SLUGS
BWING=42.8
WING=15.94
$\mathrm{SREF}=608$.
RHO $=.0012673$
RMASS $=37000 . / 32.174$
DETERMINE CONSTAMTS KI THROUGH K17. SONE ARE MADE CCMMON AND PASSED TO SUBROUTINE FUNX AND USED IN THE EQUATIONS OF MOTION THERE

INERTIAS HAVE UNITS OF SLUG-FT^2
KI HAS UNITS OF I/FT
K6, K8, K11, K14, AND K17 HAVE UNITS OF 1/FT^2
$I X=25480.0 \mathrm{dO}$
$I Y=166620.0 \mathrm{dO}$
$I Z=186930.0 \mathrm{do}$
IXZ $=-1000.0 \mathrm{~d} 0$
$\mathrm{KI}=0.5 \mathrm{dO}$ *RHO*SREF/RMASS
K2=(IZ-IY)/IX
K3 $=1 X Z * I X Z /(I X * I Z)$
K4=(IY-IX)/IZ
K5=IXZ/IX
K6=0.5dO*RHO*BNING*SREF/IX
K7 $=1 \times 2 /$ IZ
K8=0.5d0*RHO*SREF**WING/IY
K9=(IZ-IX)/IY
$K 10=1 X Z / I Y$
K11=0.5d0*RHO*SREF**ENING/IZ
$\mathrm{Kl2}=(\mathrm{K} 2+\mathrm{K} 3) /(1.0 \mathrm{dO}-\mathrm{K} 3)$
K13 = (1.0d0-K4) *K5/(1.0dO-K3)
$\mathrm{K} 14=\mathrm{K} 6 /(1.0 \mathrm{~d} 0-\mathrm{K} 3)$
$\mathrm{K} 15=(\mathrm{K} 3-\mathrm{K} 4) /(1.0 \mathrm{dO}-\mathrm{K} 3)$
K16=(1.OdO+K2)*K7/(1.OdO-K3)
$\mathrm{Kl}{ }^{1}=\mathrm{Kll} /(1.0 \mathrm{dO}-\mathrm{K} 3)$

```
Kl = 3.350088890D-04
K5 =-3.924646781D-02
K7 =-5.349596105D-03
K8 = 3.685650971D-05
K9 = . }9689713119
K1O =-6.001680471D-03
K12 = .79747314581
Kl3 =-9.615755341D-03
Kl4 = 6.472745847D-04
K15 =-.754990553922
K16 = K13
Kl7 = 8.822851558D-05
\(\operatorname{PAR}(\) ICP \()=\operatorname{PTEMP}-D X(1)\)
CALL COEFF(U,PAR,NDIM,ICP)
CALL FUNX (NDIM, U,DEIF2)
C
CONTINUE
```

$\operatorname{PAR}(I C P)=\operatorname{PTEMP}$

C
C THE NEXT DO LOOP CALCULATES THE PARTIAL DERIVATIVE OF F W.R.T.

DO $20 \mathrm{~J}=1, \mathrm{NDIM}$

RETURN
END
SUBROUTINE FUNX(NDIM,U,F)

IWRITE=1
 IWRITE=1

C
DEGRAD=57.29577951D0
C
SUBROUTINE FUNX EVALUATES THE NDIM EQUATIONS GIVEN THE STATE VECTOR U.

NDIM- THE DIMENSION OF THE PROBLEM
U - THE VECTOR OF STATES ALPHA, BETA, ... (INPUTT)
F - THE VECTOR RESULT OF FUNCTION ENALUATIONS (OUTPUT)
IMPLICIT DOUBLE PRECISION ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
COMMON /SEIZE/ CX,CY,CZ,CLM,CMM,CNM
COMMON /SEIZET/ CXTT,CYT,CZT,CLMT,CMMT,CNMT
COMMON /KS/ Kl, K5, K7, K8, K9,KlO, Kl2, Kl3, Kl4, Kl5, Kl6, Kl7
DOUBLE PRECISION Kl , K5, K7, K8, K9, K10, Kl2, $\mathrm{Kl} 3, \mathrm{Kl} 4, \mathrm{Kl} 5, \mathrm{Kl} 6, \mathrm{Kl} 7$ DIMENSION U(NDIM),F(NDIM)

SET TRIGONOMEIRIC RELATIONSHIPS OF THE STATES ALPFAA, BETA, THETA, AND PHI AND THEN SET P, Q, R, AND VTRFPS

```
CA=COS(U(1)/DEGRAD)
SA=SIN(U(1)/DEGRAD)
CB=COS(U(2)/DEGRAD)
SB=SIN(U(2)/DEGRAD)
CIHE=COS(U(6)/DEGRAD)
STHE=SIN(U(6)/DEGRAD)
CPHI=COS(U(7)/DEGRAD)
SFHI=SIN(U(7)/DEGRAD)
```

C
$\mathrm{P}=\mathrm{U}(3)$
$Q=U(4)$
$\mathrm{R}=\mathrm{U}(5)$
VIRFPS $=1000.0 \mathrm{dO} * \mathrm{U}(8)$
C
C SET THE GRAVITATIONAL CONSTANT, FT/SEC
C
$G=32.1740 \mathrm{dO}$
C
C THE FOLLOWING SYSTEM OF NONLINEAR DIFFERENTIAL EQUATIONS
C GOVERN AIRCRAFT MOTION
C
C UPDATED FOR PROPER DEGREE-RADIAN UNITS AND PROPERLY
C SCALED VELOCITY EQUATION: 7 JUN 88
C ****** ALPHA DOT ******
C
C
c
$F(1)=A L P H A-D O T$
$F(1)=Q+(-(K 1 * V I T F P S * C X-G * S T H E / V I R F P S+R * S B) * S A+(K I * V I R F P S$
$\left.\left.+\quad * C Z+\left(G^{\star} C T H E * C P H I / V I R F P S\right)-P * S B\right) * C A\right) / C B$
$F(1)=F(1) * D E G R A D$
C
C
c
C $\quad F(2)=B E T A-D O T$
C
$2 F(2)=-((K 1 * V I R F P S * C X-G * S T H E / V I R F P S) * S B+R) * C A+(Y I A * V T R F P S * C Y$
$+\quad+\mathrm{G} * \mathrm{CIHE} * \mathrm{SFHI} / \mathrm{VIRFPS}) * \mathrm{CB}-((\mathrm{Kl} * V T R F P S * C Z+G * C T H E * C P H I / V T F F P S)$
$+\quad * S B-P) * S A$
$F(2)=F(2) * D E G R A D$
C
C ****** P DOT ******
C
C $F(3)=P-D O T$
C
$3 F(3)=-K 12 * Q^{*} R+K 13 * P^{*} Q+K 14 *(C L M+K 7 * C A M) * V I R F P S * V I R F P S$
C
C ******* Q DOT ******
C
C $\quad F(4)=Q-D O T$
C

C
$6 \quad F(6)=Q *$ CPHI $-R *$ SPHI $F(6)=F(6) * D E G R A D$
****** PHI DOT *******
$F(7)=$ PHI $-D O T$
$7 \quad F(7)=P+Q *(S T H E / C T H E) * S P H I+R *(S T H E / C T H E) * C P H I$
$F(7)=F(7) *$ DEGRAD
****** V DOT ******
$F(8)=V I R F P S-D O T$ (SCALED BY A FACTOR OF 1000)
$8 F(8)=U(8) *((K 1 * V I R F P S * C X-G * S T H E / V T R F P S) * C A * C B+(K I * V I R F P S * C Y$ + +G*CTHE*SPHI/VIRFPS)*SB

REIURN
END
SUBROUTINE STPNT(NDIM,U,NPAR,ICP,PAR)
****** R DOT ******
$F(5)=R-D O T$

****** THETA DOT ******
$F(6)=T H E T A-D O T$
 AT THE START OF THE ANALYSIS. THE STATES AND CONIROL SURFACE SEITINGS REPRESENT AN EQUILIBRIUM STATE OF THE AIRCRAFT'

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION U(NDIM), PAR(10)
U(2) - BETA, DEG
U(3) - P, RAD/SEC
U(4) - Q, RAD/SEC
U(5) - R, RAD/SEC
U(6) - THETA, DEG
U(7) - PHI, DEG
U(8) - TRUE VELOCITY, IN THOUSANDS OF FT/SEC
THE STARTING POINT (VECTOR)

OPEN(UNIT $=15$, FILE $^{\prime}=$ ' fort. $15^{\prime \prime}$)

REWIND (15)
C
$\operatorname{READ}(15, *) \mathrm{U}(1)$
$\operatorname{READ}(15, *) \mathrm{U}(2)$
$\operatorname{READ}(15, *) \mathrm{U}(3)$
$\operatorname{READ}(15, *) \mathrm{U}(4)$
$\operatorname{READ}(15, *) \mathrm{U}(5)$
$\operatorname{READ}(15, *) \mathrm{U}(6)$
$\operatorname{READ}(15, *) \mathrm{U}(7)$
READ (15,*) VTRFPS
$\mathrm{U}(8)=\mathrm{VIRFPS} / 1000.0 \mathrm{dO}$
PAR(1)=DELESD
$\operatorname{PAR}(2)=\operatorname{DRUDD}$ THE PARAMEIERS, IN DEEGREES
$\operatorname{PAR}(3)=D D A$
PAR(4)=ENGPA PORT ENGINE THRUST, POUNDS/ 1000
PAR(5)=ENGSA STARBORD ENGINE THRUST, POUNDS/1000
PAR(6)=TPTAL PITCH THRUST VECTOR, DEG
C PAR(7)=TYTAL YAW THRUST VECTOR, DEG
C PAR (8) =TIHRST TOTAL THRUST, POUNDS/1000
C
$\operatorname{READ}(15, *) \operatorname{PAR}(1)$
$\operatorname{READ}(15, *) \operatorname{PAR}(2)$
$\operatorname{READ}(15, *) \operatorname{PAR}(3)$
$\operatorname{READ}(15, *) \operatorname{PAR}(4)$
$\operatorname{READ}(15, *) \operatorname{PAR}(5)$
$\operatorname{READ}(15, *) \operatorname{PAR}(6)$
$\operatorname{READ}(15, *) \operatorname{PAR}(7)$
$\operatorname{READ}(15, *) \operatorname{PAR}(8)$
REIURN
END
SUBROUTINE INIT

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
COMMON /BLCSS/ NDIM,ITMX,NPAR,ICP,IID,NMX,IPS,IRS
COMMON /BLCPS/ NTST,NCOL,IANCH,NMXPS,IAD,NPR,NWIN,ISP,ISNI
COMMON /BLDLS/ DS,DSMIN,DSMAX,IADS
COMMON /BLLIM/ RLO,RL1,AO,AL,PAR(10)
COMMON /BLOPT/ ITNW,MXBF,IPLT,ICP2,ILP
COMMON /BLEPS/ EPSU,EPSL,EPSS,EPSR
C
C IN THIS SUBROUTIRE THE USER SHOULD SET THOSE CONSTANTS
C THAT REQUIRE VALUES DIFFERENT FROM THE DEFAULT VALUES
C ASSIGNED IN THE LIBRARY SUBROOTINE DFINIT. FOR A DESCPIPTION
C OF THESE CONSTANTS SEE THE DOCARENTATION CONTAINED IN THE
C LIBRARY. COMYON BLOCKS CORRESPONDING TO CONSTANTS THAT THE USER
C WANTS TO CAARGE MUST BE INSERTED ABOVE. THESE COMMON BLOCKS
C SHOULD OF COURSE BE IDENTICAL TO THOSE IN DFINIT.
C

```
DSMAX = 10.0dO
DSMIN =0.00000010d0
EPSUS = 1.OD-07
EPSL = 1.0D-07
EPSS = 1.0D-05
EPSR = 1.0D-07
IAD = 1
ILP = 1
ITMX = 40
ITNW = 20
MXBF = 5
NDIM = 8
NPAR = 8
```

REWIND (25)
$\operatorname{READ}(25, *) \mathrm{RLO} 0, \mathrm{RLI}$
$\operatorname{READ}(25, *) \mathrm{AO}, \mathrm{Al}$
$\operatorname{READ}(25, *)$ DS
$\operatorname{READ}(25, *)$ NMX
READ (25,*) NTST,NCOL, NMXPS,NPR
$\operatorname{READ}(25, *)$ ISP,IRS,ICP,ICP2,IPLT,IPS
$\operatorname{READ}(25, *)$ ISN1
RETURN
END
C
C
C
REIURN
END
C
SUBROUTINE ICND
C
C

REIURN
END
SUBROUTINE COEFF (TJ,PAR,NDIM,ICP)
C
C
IMPLICIT DOUSLE PRECISION (A-H,O-Z)
COMMON /ACDATA/ EWING,OWING,SREF,RYY,,RMASS
COMON /SEIZE/ CX,CY,CZ,CTM, CMM,CNM
COMYON /SEIZET/CXT,CYT,CZT,CLMT, CMMT,CDMT
DIMENSION U(NDIM), PAR(10)
C
C THE PRIMARY SOURCE OF THESE COEFFICIENT EQUATIONS IS SUBROUTINE
C ARO:O FROM MCAIR CODE USED IN THE FI5 BASELINE SIMULATOR.
C MOST OF THE COEFFICIENTS USED IN THE EQUATIONS WERE COMPUTED
C USING SAS WITH RAN DATA FROM THE FIS SIMILATOR DATA TABLES.


```
C CLM
C
C CMM
                                    BASIC ROLLING MOMENT COEFFICIENT, BODY AXIS, + R WING DOWN
- BASIC PITCHING MONENT COEFFICIENT, BODY AXIS, + NOSE UP
    - BASIC YAFING MOMENT COEFFICIENT, BODY AXIS, + NOSE RIGHT
C ANGLES USED IN CALCULATING CL, CHLDB,
```

```ARE IN RADIANS. THIS
C IS BECAUSE RADIANS WERE USED IN THE CURVE FITTING PROGRAM TO C OBTAIN THE COEFFICIENTS OF THE ALPHA, BETA, ...., TERMS IN THE C FOLLOWING EQUATIONS.
C THE AERO STABILITY DATA WAS TAKEN REFERENCED TO THESE CG
C LOCATIONS. THE MCMENTS OF IHERTIA AND OTHER AIRCRAFT DATA
C ARE FOR A CLEAN CONEIGURATION TEST AIRCRAFT WITH A OG AT
C THE SAME CG. AS A RESULT, THERE IS NO 'CG OFFSET' TO BE
C COMPUTED.
    AL=U(1)
    BETA=U(2)
    P=U(3)
    Q=U(4)
    R=U(5)
    THETA=U(6)
    PHI=U(7)
    VTRFPS=U(8)*1000.
C
DELESD=PAR(I)
    DRUDD=PAR(2)
    DDA=PAR(3)
    ENGPA=PAR(4)
    ENGSA=PAR(5)
    TPTAL=PAR(6)
    TYTAL=PAR(7)
    TTHRST=PAR(8)
C
    DEGRAD=57.29577951
    DELESR=DELESD/DEGRAD
    YTAL=TYTAL/DEGRAD
    PTAL=TPTAL/DEGRAD
C
C
C
MOMENT REFERENCE CENTER WAS SET IN AROIO PROGRAM AS:
    DATA CMCGR /.2565/, CNCGR /.2565!
    IWRITE=0
    IF BLOCK TO CHANGE TOTAL THRUST
    IF(ICR.EQ.8)THEN
        DIFT=PAR(4)-PAR(5)
        THALF=TTHRST/2.0dO
        ENGPA=THALf+DIFT/2.0d0
        ENGSA=THALF-DIFT/2.0d0
    ENDIF
```

```
C
C
C
ENGP=ENSPA*1000.0 ENGS=EIGSA*1000.0
QBARS=0.5d0*RHO*VTRFPS*VITRFPS*SREF
CO2V=CWING/ (2.0dO*VIRFPS)
BO2V \(=\) BNING \(/(2.0 \mathrm{dO} * V\) IRFPS \()\)
QSB=BNING*QBARS
ARUD=ABS (DRUDD)
RARUD=ARUD/DECTRAD
RAL=AL/DEGRAD
ABET \(=\mathrm{ABS}\) (BETA)
RABET=ABET/DEGRAD
NEW SECTION OF CODE - 1) ALL THE AERODYNAMIC COEFFICIENTS IN THIS VERSION OF THE DRIVER PROGRAM ARE TAKEN DIRECTLY FROM THE 1988 Fl5 AEROBASE ( 0.6 MACH, 20000 FEETS)
2) THIS SECTION SUMMARIZES THE AERODYNRMIC COEFFICIENTS AS TO WHAT THEY ARE AND HOW THEY ARE USED. THE FIRST ACCRONYM IS THE JOVIAL NAME OF THE AERODYNAMIC COEFFICIENT (CFXI, ETC), THE SECOND ACCRONYM IS THE FI5 AEROBASE CODE OR CTAB NAME (ATAB15, EIC). A BRIEF DEFINITION OF THE AERODYNAMIC COEFFICIENT IS AISO PROVIDED.
3) THERE IS ALSO A SECTION THAT PROVIDES A TABLE OF CONVERSIONS BEIWEEN WHAT THE VARIABLE IS CALLED IN THE ORIGINAL SECTION OF THIS PROGRAM AND ITS NAME IN THE 1988 Fl5 AEROBASE. FOR THE SAKE OF CONTINUITY THE ORIGINAL PROGRAM NAME IS USED AND THE 1988 Fl5 AEROBASE NAME IS PROVIDED AS BOOK KEEPPING INFORMATION.
CFX = FORCE IN STABILITY AXIS X DIRECTION (CD IN BODY AXIS)
(FUNCTION OF CL OR CFELI)
CFX \(=\) CFXI + CXRB + STORE INCREMENTS + CXDSPD + ICXIG + ICD SET TO 0 SINCE THIS STUDY IS CONCERNED
```

WITH HIGH ANGIES
OF ATMTACK PHENOMENON (>40 DEGREES) AND BECAUSE THE SPEEDBRAKE WILL NOT DEPLOY AT ANGLES OF ATTACK GREATER THAN 15 DEGREES.
DCXIG $=$ ATAB19 $=$ DELTA CD DUE TO REYNOLD'S NLMBER ($=-0.0005$)
DCD $=$ BTABO3 $=$ DELTA CD DUE TO 2-PLACE CANOPY (FI5B) ($=0.0005$)
******* NOTE THAT DCXIG AND DCD CANCEI EACH OITER *******
C CFY $=$ CFY1*EPAO2 + CYDAD*DAILD $+[$ CYDRD*DRUDD*DRFTA5 $] * E P A 43$

```
C
C CFZ = FORCE IN STABILITY AXIS Z DIRECTION (CL IN BODY AXIS)
C CFZ = CFZI + CZDSPD + STORE INCRDMENTS + DCL*BENA
C
C
C
CML = TOTAL ROLLING MOMENT COEFFICIENT IN BODY AXIS
CML = CMLI*EPAO2 + CLDAD*DAILD + [CLDRD*DRUDD*DRFLXI]*EPPA43 +
    [CLDID*DIFTXI + DIFLNX2]*DTALD + CMLP*PB + CMLR*RB +
    STORE INCREMENTIS + CLDSPD + DCLB*BETA
OMLI = ATABO1 = BASIC ROLLING MOMENTT COEFFICIENT - CL(BETA)
EPAO2 = ATAB21 = BETA MULTIPLIER TABLE
CLDAD = ATAB73 = ROLL MOMENT COEFFICIENT DUE TO AILERON DEFLLECTION
                -(CLDA)
DAILD = AILEERON DEFLECTION (DEG)
CLDRD = ATAB67 = ROLLING MOMENT COEFFICIENT DUE TO RUDDER
                                DEFLECTION - (CLD)
DRUDD = RUDDER DEFLECTION (DEG)
DRFLXI = ATAB8O = FLEX MULTIPLIER ON CLDRD (=0.85)
EPA43 = ATAB3O = MULTIPLIER ON CNDR, CLDD, CYDR DUE TO SPEFDBRAKE
                            (=1.0)
CLDID = ATAB70 = ROLL MOMENT COEFFICIENT DUE TO DIFFERENTIAL TAIL
                                    DEFLLECTION - CLLDD
DIFLXI = ATAB04 = FLFX MULTIPLIER ON CLDID (=0.975)
DTFLLX2 = ATAB84 = FLEX INCREMENT' TO CLDID (=0.0)
DTALD = DIFFERENTIAL TAIL DEFLECTION (DEG) WHICH IS
                                    DIRECILY PROPORTIONAL TO AILERRON DEFLLECTION AND
                                    IS PRIMARILY USED TO ASSIST IN ROLLING THE F-15B
                                    (DTALD = 0.3*DAILD)
CMLP = ATABO2 = ROLL DAMPING DERIVATIVE -CLP
PB = (PFOBB*SPAN)/(2*VILWF)
                                    PEOBB = ROLL RATE IN RAD/SEC = P
                                    SPAN = WING SPAN = 42.8 FEET = BWING
                                    VIIWF = VELOCITY IN FT/SEC = VIREPS
OMLR = ATABII = ROLLING MOMENT COEFFICIENT DUE TO YAN RATE - CLR
RB = (REOBB*SPAN)/(2*VILWF)
                            REOBB = YAN RATE IN RAD/SEC = R
CLDSPD = ATAB29 = DELTA CL DUE TO SPEFEDBRAKE
                                    SET TO O DUE TO THE REASONS GIVEN ABOVE IN CXDSPD
DCLB = BTABO4 = INCREMENT DELTAA CLB (ROLLING MONENT) DUE TO 2-PLACE
                                    CANOPY FROM PSWT 499
C************ CMM ***********************************************************
```

```
C
```

```
CMM = TOTAL PTTCHING MOMENT COEFFICIENT IN STABILITY AXIS
    (BODY AXIS - AS WELL)
CMM = CMMI + OMMNKOB + STORE INCREMENTS + CMDSPD + DOM
CMM1 = ATAB03 = BISIC PITCHING MOMENT COEFFICIENT - OM
CMMQ = ATABO5 = PITCA DAMPING DERIVATIVE - CMQ
QB
            = (CEOBB*MAC)/(2*VILWF)
                                QEOBB = PITCH RATE IN RAD/SEC = Q
                                MAC = MEAN AERODYNAMIC CHORD = 15.94 FEETT = WING
                                VILWF = VELOCITY IN FT/SEC = VITRFPS
CMDSPD = ATAB25 = DED.TA OM DUE TO SPEEDBRAKE
                                    SET IO O DUE THE REASONS GIVEN ABOVE IN CXDSPD
DCM = BTABO2 = DELTA CM LUE TO 2-PLACE CANOPY (FI5B) (=0.0)
*********** CNM *******************************************************C
OMN = TOTAL YANING MOMENT COEFFICIENT IN BODY RXIS
CMN = CMN1*EPAO2 + CNDAD*DAILD + [CNDRD*DRUDD*DRFLX3]*EPA43
        +[CNDTD*DITXX + DIFLX4]*DTALD + CMNP*PB + CMNR*RB + CNRB
        +DCNB2*EPA36 + STORE INCREMENTS + CNDSRD + DCNB*BETA
CMNI = ATABl2 = BASIC YANING MOMENT COEFFICIENT - CN (BETA)
EPAO2 = ATAB21 = RETA MULTIPLIER TABLE
CNDAD = ATAB74 = YAN MOMENT COEFFICIENT DUE TO AILERON
                        DEFLECTION -CNDA
DAILD = = AILERON DEFLECTION (DEG)
CNDRD = ATAB68 = YAWING MOMENT COEFFICIENT DUE TO RUDDER
                DETLECTION -CNDR
DRUDD = RUDDER DEFLECTION (DEG)
DRFLX3 = ATAB85 = FLEX MULTIPLIER ON CNDRD
EPA43 = ATAB30 = MULTIPLIER ON CNDR, CLDR, CYDR DUE TO SPEEDBRAKE
CNDID = ATAB71 = YANING MOMENT COEFFICIENT DUE TO DIFFERENTIAL TAIL
                                    DEFLECTION - CNDDT
DTFLX3 = ATAB08 = FLEX MULTIPLIER ON CNDID
DTFLX4 = ATAB09 = FLEX INCREMENT ON CNDTID ( =0.0)
DTALD = = DIFFERENTIAL TAIL DEFLECTION (DEG) WHICH IS
                                    DIRECTLY PROPORTIONAL TO AILERON DEFLECTION
                                    AND IS FRIMARILY USED TO ASSIST IN ROLLING
                                THE F-15B (DTALD = 0.3*DAILD)
CMNP = ATABO6 = YANING MOMENT COEFFICIENT DUE TO ROLL RATE - CNE
PB = (PEOBB*SPAN)/(2*UILNE)
                                PEOBB=ROLL RATE IN RAD/SEC = P
                                SPAN = WING SPAN = 42.8 FT = EWING
                                VILWF = VEIOCITY IN FT/SEC = VITRFPS
CMNR = ATABI4 = YAN DAMPING DERIVATIVE - CNRR
RB = (REOBB*SPAN)/(2*VILWF)
                                REOBE = YAN RATE IN RAD/SEC = R
CNDSPD = ATAB28 = DELTTA CN DJE TO SPEFDBRAKE
                                    SET TO O DUE TO THE REASONS GIVEN ABOVE IN CXDSPD
DCNB = BTABO5 = TNCREMENT DELTA CNB (YAWING MOMENT) DUE TO
```

RBETA=BETA/DEGRAD
DAILA $=A B S$ (DDA)
$\mathrm{PB}=(\mathrm{F} * \mathrm{BWING}) /\left(2.0 \mathrm{dO} * \mathrm{VIRFPS}^{2}\right)$
$Q B=\left(Q^{*}\right.$ CWING $) /\left(2.0 \mathrm{dO}{ }^{*}\right.$ VTRFPS $)$
$R B=(R * B W I N G) /(2.0 d 0 * V T R F P S)$

ORIGINAL
PROGRAM NAME DEFINITION
************* ***********

AL
BETA
RBETA
ABET

DAILA

DDA
ARUD

RARUD

DRUDD
DELESD(R)
$\operatorname{DELELD}(R)$
ANGLE OF ATTACK (DEG)
SIDESLIP ANGLE (DEG)
SIDESLIP ANGLE (RAD) SIDESLIP ANGLE (DEG) AILERON DEFLECTION (DEG)
AILERON DEFLECTION (DEG)

RUDDER DEFLECTION (DEG)

RUDDER DEFTES-
TION (RAD)
(DEG)
AVERAGE
STABILATOR
DEFLECTION
DEG (RAD)

ABSOLUTE VALUE OF

ABSOLUTE VALUE OF

ABSOLUTE VALUE OF

ABSOLUTE VALUE OF

RUDDER DEFLECTION

DIFFERENTIAL TAIL DEFLECTION DEG (RAD)

```
C
C EPAO2 IS A MULTIPLIER THAT ADJUSTS THE PARTICULAR COEFFICIENT'
C IT IS WORKING ON (CFYI,OMLI,OMN1) BY CHANGING THAT PARTICULAR
C COEFFICIENTS SIGN (POSITIVE OR NDGATIVE) DEPENDENT ON THE SIGN
C OF THE SIDESLIP ANGLE (BETA). IF BETA IS NEGATIVE THEN
C EPAO2=-1.0. IF BETA IS POSITIVE THEN EPAO2=1.0. SINCE THIS
C FUNCTION IS DISCONTINUOUS AT THE ORIGIN A CUBIC SPLINE HAS
C
C
C
    IF (BETA .LT. -1.0) THEN
    EPA02S= -1.0dO
    ENDIF
C
        IF ((BETA .GE. -1.0) .AND. (BETA .LE. 1.0)) THEN
        EPA02S=-1.0dO+(1.50dO*((BEIA+1.0d0)**2.0dO))-
    1 (0.50d0*((BETA+1.0dO)**3.0dO))
        ENDIF
C
    IF (BET'A .GI'. 1.0) THEN
    EPA02S=1.0dO
    ENDIF
C
    IF (BETA .LT. -5.0) THEN
    EPAO2L= -1.0dO
    ENDIF
C
    IF ((BETA .GE. -5.0) .AND. (BETA .LE. 5.0)) THEN
    EPA02L=-1.0dO+(0.060dO*((BETA+5.0dO)**2.0dO))-
    1 (0.0040d0*((BETA+5.0dO)**3.040))
    ENDIF
C
    IF (BETA .GT. 5.0) THEN
    EPA02L=1.0dO
    ENDIF
    ***** DIFFERENTIAL ElEVATOR *****
    DTALD=0.30dO*DAILD
    DELEDD=0.30dO*DDA
    DEUEDR=0.30dO*(DDA/DEGRAD)
C
C********** CFZ ******************************************************
C
        CFZl=-0.00369376+(3.78028702*RAL )+(0.6921459*RAL**RAL)-(5.0005867
        +*(RAL**3))+(1.94478199*(RAL**4))+(0.40781955*DELESR)+(0.10114579
        +*(DEUESR*DELESR))
C
    CFZ=CFZ1
C
C********* CFX *********************************************************
C
    CL=CFEL/57.29578
```

TRANSITIONING FROM LOW AOA DRAG TABLE TO HIGH AOA DRAG TABLE
CFX2 $=0.0267297-(0.10646919 * R A L)+(5.39836337 * R A L * R A L)$
$+-(5.0986893 *($ RAL**3 $))+(1.34148193 *($ RAL** 4$))+$
$+(0.20978902 *$ DELESRR $)+(0.30504211 *($ DELESR**2 $) ~) ~+0.09833617$
C
$\mathrm{Al}=20.0 \mathrm{dO} / \mathrm{DEGRAD}$
A2 $=30.0 \mathrm{dO} / \mathrm{DEGRAD}$
Al2 $=\mathrm{Al}+\mathrm{A} 2$
$B A=2.0 /(-A 1 * * 3+3 . * A 1 * A 2 *(A 1-A 2)+A 2 * * 3)$
$\mathrm{BB}=-3.0 \mathrm{~d} 0 * \mathrm{BA} *(\mathrm{Al}+\mathrm{A} 2) / 2.0 \mathrm{~d} 0$
$\mathrm{BC}=3.0 \mathrm{~d} 0 * \mathrm{BA} * \mathrm{~A}_{1} * \mathrm{~A} 2$
$B D=B A * A 2 * * 2 *(A 2-3.0 d 0 * A l) / 2.0 \mathrm{~d} 0$
$F l=B A * R A L * * 3+B B * R A L * * 2+B C * R A L+B D$
$F 2=-B A * R A L * * 3+(3.0 d 0 * A l 2 * B A+B B) * R A L * * 2.0 d 0-$
$+(B C+2.0 \mathrm{~d} 0 * A 12 * B B+3.0 \mathrm{C} 0 * A 12 * * 2 * B A) * R A L+$
$+B D+A l 2 * B C+A l 2 * * 2 * B B+A l 2 * * 3 * B A$
C
IF (RAL .LT. Al) THEN
C
$\mathrm{CFX}=\mathrm{CFXI}$
C
ELSEIF (RAL .GT. A2) THEN
C
$\mathrm{CFX}=\mathrm{CFX} 2$
C
ELSE
C
$\mathrm{CFX}=\mathrm{CFX} 1 * \mathrm{Fl}+\mathrm{CFX} 2 * \mathrm{~F} 2$
C
ENDIF
C C********** CFY **
C
DIFLX5: 0.975 dO
DRFLX5 $=0.89 \mathrm{dO}$
C

```
    CFYl = -0.05060386-(0.12342073*RAL)+(1.04501136*RAL*RAL)
    +-(0.17239516*(RAL**3))-(2.90979277*(RAL**4))
    ++(3.06782935*(RAL**5))-(0.88422116*(RAL**6))
    +-(0.06578812*RAL*RABET)-(0.71521988*RABET)-(0.0000047527;
    +*(RABET**2))-(0.04856168*RAL*DETESR)-(0.05943607*RABET*DELESR)+
    +(0.02018534*DEIESR)
```

IF (RAL .LT. .52359998) THEN

```
CFYP=0.0146051.88+(2.52405655*RAL) -(5.02687473*(RAL**2))
+-(106.43222962*(RAL**3))+(256.80215423%(RAL**4))
++(1256.39636248*(RAL***5))
+\cdots(3887.92878173*(PAL**6))-(286.3.16083460*(RAL**7))+
+(17382.72226362*(RAL**8))-(13731.65408408*(RNL**9))
    ENDIF
```

IF ((RAL .GE. .52359998) .RND. (RAL .LE, .610863)) THEN
CFYP $=0.00236511+(0.52044678 *($ RAL -0.52359998$))-(12.8597002 *(R A L-$
$+0.52359998) * * 2)+(75.46138 *($ RAL -0.52359998$) * * 3)$
ENDI:
IF (RAL . $3 T .0 .610865$) THEN
CFYP=0.0do
ENDIF
IF (RAL .LH. -0.06981) THEN
$C F: P=0.35 d 0$
ENDIF
IF ((RAL .GE. - 0.06981) .AND. (RAL, .LT. 0.0)) THEN
CFYR=0.34999999+(35.4012413**(RALirO.06981)**2)-(493.33441162*
$+($ RAL +0.06981$) * * 3)$
ENDIF
IF ((RAL .GE. O.0) .AND. (RAL .LE. 0.523599)) THEN
CFYR $=0.35468605-(2.26998141 *$ RAL $)+(51.82178387 *$ RAI ©RAL $)$
+-(718.55069823*(RAL_**3))
++(4570.00492172*(RAL**4))-(14471.88028351*(RAL*..5))+

ENDIF
IF ((RAL .GT. 0.j2こ599) .AND. (NAL . AE. 0.61087) THEN
CFYR=0.00193787+(1.78332495*(RAL-0.52359903))-(41.63198853* (RAL-
$+0.52359903) * * 2)+(239.97909546 *($ RAL -0.52359903$) * * ?)$
ENDIF
IF (RAL .GT. 0.61087) IHEN
CFYR=0.0dO
ENDIF
IE (REN .LT. 0.55851) THEN

```
    CYIDAD =-0.00020812+(0.00062122*RAL) +(0.0026072S*RAL*RAL )
++(0.00745739*(RAL**3))-(0.0365611*(RAL**4))
+-(0.04532683*(RAL**5))+(0.20674845*(RAL**6))
+-(0.13264434*(RAL**7))-(0.00193383*(RAL**8))
    ENDIF
```

```
    CYDRD=0.00310199+(0.00119963*RAL)+(0.02806933*RAL*RAL)
+-(0.12408447*(RAL**3))-(0.12032121*(RAL**4))
++(0.79150273*(RAL**5))-(0.86544347*(RAL**6))
++(0.27845115*(RAL**7))+(0.00122999*RAL*RARUD)+(0.00145943
+*RARUD)-(0.01211427*RARUD*RARUD)+(0.00977937*(RARUD**3))
```

 CYITD \(=-0.00157745-(0.0020881 * \mathrm{RAL})+\left(0.00557239 * \mathrm{RAL} \star_{\mathrm{RAL}}\right.\))
 $+-(0.00139886 *(R A L * * 3))+(0.04956247 *(R A L * * 4))$
$+-(0.0135353 *(R A L * * 5))-(0.11552397 *(R A L * * 6))$
$++(0.11443452 *($ RAL***7) $)-(0.03072189 *($ RAL**8)) -(0.01061113*

$++(0.01885 .361 * R A L * R A L *$ DELESR $)-(0.01412258 * R A L *$ (DELESR** $?$))
$+-(0.0008: .76 *$ DELESR $)+(0.00404354 *($ DELESR**2 $))-$
$+(0.0021 .2189 *(D E L E S R * * 3))+(0.00655063 *(D E T E S R * * 4))$
++(0.03341584*(DETLESR**5))
C
RALY1 $=0.6108652$
RALY2=90.0オ0/DEGPRD
RBETYl $=-0.0872565$
RBETY2 $=0.1745329$
C
$A Y=0.1640 \mathrm{~d} 0$
ASTARY=0.95993
BSTARY $=0.087266$
ZETAY $=(2.0 D 0 *$ ASTARY $-($ RALY1 + RALY2 $)) /($ RALY2-RALY1 $)$
ETAY=(2.0D0*BSTr:RY-(RBETYl+RBETY2))/(RBETY2-RBETY1)
$\mathrm{X}=(2.0 \mathrm{D} 0 * \mathrm{RAL}-($ RALYI + KALY2 $)$)/(RALY2-RALY1)
$\mathrm{Y}=(2.0 \mathrm{D} 0$ *RBETA-(RBETY1+RBETY2))/(RBETY2-RBETY1)

$+* * 2) *(1.0 \mathrm{DO} /((($ ZETAY**2 $)-1.0 \mathrm{DO}) * * 3)$;
C
$G Y=((5.0 D 0 *(E T A Y * * 2))-(4.0 D 0 * E T A Y * Y)-1.0 D 0) \because \prime((Y * * 2)-1 . O D O) * * 2)$
+*(1.0DO/(((ETAY**2)-1.0D0)**3))

C
IF (RAL .LT. 0.6108652) THEN
C
CYRB=0.0dO
GCTO 500
EVDIF
C
IE ((RBETA .LY. -0.0872665) .OR. (RBETA .GT. 0.1745329)) THEN
C
CYR 0.0dO
GOTO 500
ENDIF
C
J00 CFY=(CFYI*EPAO2L $)+($ CYDAD*DIA $)+(C Y D R D * D R U D D * D R F L X 5 * E P A 43)+$

+ ! (CYTITD*DTFLX5) *DELEDD $)+($ CFYP*PE $)+($ CFYR*RB $)$
++CYRB
C
C************* CLM ****************:*********************************
C
UTFLXI $=0.9750 \mathrm{do}$
DFFLXI=0.850d0
C
CML $=-0.00238235-(0.046 * .6235 *$ RAi $)+(0.10553168 * R A L * R A L)$

```
++(0.10541585*(RAL**3))-(0.40254765*(RAL**4))
```

$++(0.32530491 *(R A L * * 5))-(0.08496121 *(R A L * * 6))$
$++(0.00112288 *(R A L * * 7))-(0.05940477 * R A B E I * R A L)-$
$+(0.07356236 *$ RABET $)-(0.00550119 *$ RABET*RABET $)+(0.00326191$
+*(RABET**3))

C
C

IF ((RAL .GE. 0.7854) .AND. (RAL .LE. 0.87266)) THEN

```
    IF (RAL .GT. 0.87266) THEN
```

 CMLR \(=-311.126041+(1457.23391042 * R A L)-(2680.19461944 * R A L * R A L)+\)
 +(2361.44914738*(RAL**3))-(893. S3.567263*(RAL**4))+(68.23501924*
 +(RAL**6))-(1.72572994*(RAL**9))
ENDIF
C

IF (RAL .LTT 0.29671) THEN

```
CMLP= -0.24963201-(0.03106297*RAL) +(0.12430631*RAL*RAL)
+-(8.95274618*(FAL**3))+(100.33109929*(RAL**4))
++(275.70069578*(RAL**5))-(1178.83425699*(RAL***6))
+-(2102.66811522*(R.GL**7))+(2274.8978555.l*(RAL**8))
    ENDIF
```

 IF ((RAL .GE. 0.29671) .AND. (RAL .LTT. 0.34907)) THEN
    ```
    OMLP=-0.1635261-(3.77847099*(RAL-0.29671001))+(147.47639465
+*(RAL-0.29671001)**2)-(1295.94799805*(RAL-0.29671001)**3)
    ENDIF
```

 IF (RAL .GE 0.34907) THEN

$++(11.21323850 *(R A L * * 3))$
$+-(4.26789425 *($ RAL**4 $))+(0.62 \div 3381 *(R A L * * 5))$
ENDIF
IF (RAL .LT. 0.7854) THEN
CMLR $=0.03515391+(0.59296381 * R A L)+(2.27456302 * R A L * R A L)$
+-(3.8097803*(RAL**3))
$+-\left(15.83162842 *\left(\right.\right.$ RAL $\left.\left.^{* * 4}\right)\right)+(55.31669213 *($ RAL**5 $))+$
+(194.29237485*(RAL**6))-(393.22969953*(RAL**7))+(192.20860739*
+(RAL**8))
ENDIF

```
    CMLR=0.0925579071-(0.6000000238*(RAL-0.7853999734))
```

 CMLR=0.0925579071-(0.6000000238*(RAL-0.7853999734))
 ++(1.3515939713*((RAL-0.7853999734)**2))
++(1.3515939713*((RAL-0.7853999734)**2))
++(29.0733299255*((RAL-0.7853999734)**3))
++(29.0733299255*((RAL-0.7853999734)**3))
ENDIF

```
    ENDIF
```

```
CLDAD=0.00057626+(0.00038479*RAL)-(0.00502091*RAL*RAL)
++(0.00161407*(RAL**3))+(0.02268829*(RAL**4))
+-(0.03935269*(RAL**5))+(0.02472827*(RAL**6))
+-(0.00543345*(RAL**7))+(0.0000007520348*DELLESR*RAL) +
+(0.000000390773*DELESR)
```

C
CLDRD $=0.00013713-\left(0.00035439 \mathrm{ARAL}^{2}\right)-(0.00227912 *$ RAL*RAL $)$
$++(0.00742636 *(R A L * * 3))+(0.00991839 *(R A L * * 4))$
$+-(0.04711846 *(R A L * * 5))+(0.046124 *(R A L * * 6))$
$+-(0.01379021 *(R A L * * 7))+(0.00003678685 * R A R U D * R A L)+$
$+(0.00001043751 \star R A R U D)-(0.00015866 * R A R U D * R A R U D)+(0.00016133$
+*(RARUD**3))

C
CLDID $=0.00066663+\left(0.00074174 \star_{\mathrm{RAL}}\right)+\left(0.00285735 \star_{\mathrm{RAL}} \mathrm{*RAL}^{2}\right)$
+-(0.02030692*(RAL**3))-(0.00352997*(RAL**4))
++(0.0997962*(RAL**5))-(0.14591227*
$+($ RAL**6)) $+(0.08282004 *(R A L * * 7))$
$+-(0.0168667 *($ RAL** 8$))+(0.00306142 *(R A L * * 3) * D E L E S R)$
+-(0.00110266*RAL*RAL*(DETESR**2))+(0.00088031*RAL*
+(DELESR**2))-(0.00432594*RAL*RAL*DELESR)-
$+(0.00720141 *$ RAL*(DELESR**3))
$+-(0.00034325$ *DELESR $)+(0.00033433 *($ DELESRR*2 $))+(0.00800183$
+*(DELESR**3))-(0.00555986*(DELESR**4))-(0.01841172*(DELESR**5))
IF (RAL .LT. O.0) THEN

C

DCLB $=-0.000060 \mathrm{~d} 0$

ENDIF
C

C
IF ((RAL .GE. 0.0) .AND. (RAL .LE. 0.209434)) THEN
DCLB $=-0.000060 \mathrm{dO}+(0.0041035078 *$ RAL*RAL $)-(0.0130618699 *($ RAL** 3$))$ ENDTF
C
IF (RAL .GT. 0.209434) THEN
C
DCLB=0.OdO
ENDIF
C
CML $=($ CMLI*EPRO2S $)+(C L D A D * D D A)+(C L D R D * D R U D D * D R F L X I * E P A 43)+$ $+((C L D T D * D T F L X I) * D E L . E D D)+(C M L P * P B)+(C M L R * R B)+(D C L B * B E T A)$
C
C************** CMM ***
C
CMM1 $=0.00501496-(0.08004901 * R A L)-(1.03486675 *$ RAL*RAL $)$
+-(0.68580677*(RAL**3))+(6.46858488*(RAL**4))
+-(10.15574108*(RAL**5))+
$+(6.44350808$ (RAL**6)) -(1.46175188*(RAL**7))
++(0.24050902*RAL*DEUESR)
+-(0.42629958*DELESR)-(0.03337449*DELESR*DETESR)
+-(0.53951733*(DET.ESR**3))
C
C modified 25 Jul 90 to use new curve fit for CMQ

```
C OLD EQUATION
IF (RAL .LE. 0.25307) THEN
CMMQ =-3.8386262+(13.54661297*RAL )+(402.53011559*RAL**RAL)
+-(6660.95327122*(RAL**3))-(62257.89908743*(NAL***4))
++(261526.10242329*(RAL**5))
++(2177190.33155227*(RAL**6))-(703575.13709062*(RAL**7))-
+(20725000.34643054*(RAL**8))-(27829700.5333364؟,*(RAL**9))
ENDIF
IF ((RAL .GT. O.25307) .AND. (RAL .LT. 0.29671)) THEN
CMMQ=-8.4926528931-(2705.3000488281*(RAL-0.2530699968))
++(123801.5*(RAL-0.2530699968)**2)
+-(1414377*(RAL-0.2530699968)**3)
    ENDIF
    IF (RAL .GE. .29671) THEN
    QMMQ 47.24676075-(709.60757056*RAL )+(3359.08807193*RAL*RAL)-
+(7565.32017266*(RAL**3))+(8695.1858091*(RAL**4))
+-(4891.77183313*(RAL**5))+(1061.55915089*(RAL**6))
    ENDIF
    OMQ vs. alpha n degrees
        NEN EQUATION
    convert a!pha to degrees
    A=RAL*DEGF4D
        Fl=-4.33509d0+A* (-0.141624d0+A* (0.0946448d0+A* (-0.00798481d0
+ +A*(-0.00168344d0+A*(0.000260037dO+A*(6.64054d-6+A*(
+ -2.20055d-6+A*(-2.74413d-8+A*(7.14476d-9+A*
+ 2.07046d-10))\))))))
    F2=-302.567+a*(106.288+a*(-14.7034+A*(1.02524+A* (-0.0393491
+ +A\star(0.00084082+A*(-9.365e-6+A*4.2355e-8))))))
F3=1724.99+A* (-158.944+A* (5.59729+A* ( -0.0949624+A*(
+ 0.000779066+A*(-2.47982e-6)))))
ramp functicns
Rl=1.0-0.75*(A-10.0)**2+0.25*(A-10.0)**3
R2=1.0-R1
R3=1.0-7.5*(A-40.0)**2/62.5+(A-40.0)**3/62.5
R4=1.0-R3
    IF(A.LT.10.0)THEN
```

CMMOFF1
ELSEIF(A.LT.12.0)THEN QMO $=F 1 * R 1+F 2 * R 2$
ELSEIF(A.LT. 40.0)THEN CMMQ $=F 2$
ELSEIF(A.LT. 45.0)THEN $Q \mathrm{MQ}=\mathrm{F} 2 * \mathrm{R} 3+\mathrm{F} 3 * R 4$
ELSE CAMQ=F3
ENDIF
C
QMM=CMMI + (MMQ*QB)
C

C
DTFTXX3 $=0.9750 \mathrm{dO}$
DRFLXX $=0.890 \mathrm{dO}$
C
QMN1 $=0.01441512+(0.02242944 * R A L)-(0.30472558 *(R A L * * 2))$
$++(0.14475549 *(R A L * * 3))$
$++(0.93140112 *($ RAL**4 $))-(1.52168677 *($ RAL**5 $))+$
$+(0.90743413 *($ RAL**6) $)-(0.16510989 *$ (RAL**7) $)$
$+-(0.0461968 *$ (RAL**8))
$++(0.01754292 *($ RAL**9 $)$) $-(0.17553807 * R A L * R A B E T)+$
$+\left(0.15415649 * R A L * R A B E I^{*}\right.$ DETESR)
$++(0.14829547 *$ (RAL**2)*(RABET**2))
$+-(0.11605031 *$ (RAL**2)*RABEI*DETFSR)
$+-(0.06290678 *($ RAL **2 $) *($ DETESR**2) $)$
$+-(0.01404857 *($ RAL**2 $) *($ DELESR * * 2$))$
$++(0.07225609 *$ RABET $)-(0.08567087 *($ RABEI**2 2$))$
$++(0.01184674 *($ RABET**3))
$+-(0.00519152 *$ RAL *DENHSR $)+(0.03865177 *$ RABEI*DETESR $)$
$++(0.00062918 *$ DELESSR $)$
CNDRD $=-0.00153402+(0.00184982 * R A L)-(0.0068693 * R A L * R A L)$
++(0.01772037*(RAL**3))
++(0.03263787*(RAL**4))-(0.15157163*(RAL**5))+(0.18562888
$+\star($ RAL**6 $)$) $-(0.0966163 *($ RAL**7) $)+(0.01859168 \star($ RAL** 8$))+(0.0002587$
+*RAL*DETESR)-(0.00018546*RAL*DELESR*RBETA)-(0.00000517304*RBETA)
$+-\left(0.00102718 *_{\text {RAL*RBETA }}\right)-(0.0000689379 *$ RBETA*DELESR $)-(0.00040536$
+*RBETA*RARUD) - (0.00000480484 *DELESR*RARUD)
$+-(0.00041786 \star$ RAL*RARUD $)$
$++(0.0000461872 *$ RBETA $)+(0.00434094 *($ RBETA $* * 2))$
+-(0.00490777*(RBETA**3))
$++\left(0.000005157867 \star^{2}\right.$ RARUD $)+(0.00225169 * R A R U D * R A R U D)-(0.00208072$
+*(RARUD**3))
C
IF (RAL .LT. 0.55851) THEN
C

$$
\begin{aligned}
& \text { QNN }=-0.00635409-(1.14153932 * R A L)+(2.82119027 *(\text { RAL**2 }) \text {) }+ \\
& +(54.4739579 *(R A L * * 3))-(140.89527667 *(R A L * * 4))-(676.73746128 * \\
& \text { +(RAL**5)) +(2059.18263976*(RAL**6)) +(1579.41664748*(RAL**7)) } \\
& +-(8933.08535712 \star(R A L * * 8))+(6806.54761267 \star(\text { RAL**9 }) \text {) }
\end{aligned}
$$

ENDIF

```
CMNP=-71.03693533+(491.32506715*RAL)
```

```
+-(1388.11177979*(RAL**2))+
\(+(2033.48621905 *(\) RAL.**3) )
+-(1590.91322362*(RAL**4))+(567.38432316*(RAL**5))
+-(44.97702536*(RAL**7))+(2.8140669*(RAL**g))
ENDIF
```

C
C
CMNR $=-0.28050 \mathrm{dO}$
ENDIF

```
CMNR=-0.2804999948+(35.9903717041*(RAL+.0698129982)**2)
```

$+-(516.1574707031 *($ RAL +.0698129982$) * * 3)$
ENDIF
ENDIF

```
CNDTD =0.00058286+(0.0007341*RAL) -(0.00746113*RAL*RAL)
+-(0.00685223*(RAL**3))
++(0.03277271*(RAL**4))-(0.02791456*(RAL**5))
++(0.00732915*(RAL***6))
++(0.00120456*RAL*DELESSR)-(0.00168102*DELESR)+(0.0006462*
+DELESR*DELESR)
```

$++(0.00193323 *(R A L * * 6))-(2.05815 E-17 *(R A L * D A I L A))+(3.794816 E-17 *$
+(DAILA**3))
RALNI $=0.69813$
RALN2 $=90.0 \mathrm{dO} /$ DEGRAD
RBETN1 $=-0.174 .532$
RBEIN2 $=0.34906$
C
$\mathrm{AN}=0.034 \mathrm{do}$
ASTARN $=1.0472 \mathrm{dO}$
BSTMRN $=0.087266$
C
ZETAN= (2.0D0*ASTARN-(RALN1+RALN2))/(RALN2-RALN1)
ETAN $=(2.0 D 0 *$ BSTARN-(RBETN1+RBETN2) $) /($ RBETN2-RBETN1 $)$
c
XN= (2.0DO*RAL-(RALN1+RALN2))/(RALN2-RALN1)
YN=(2.0D0*RBETA-(RBETN1+RBETN2))/(RBEIN2-RBEIN1)
C
FN=((5.0DO*(2ETAN**2))-(4.0D0*ZETAN*XN)-1.0D0)*
$+(((X N * * 2)-1.0 D 0) * * 2) /((($ ZETAN**2 $)-1.0 D 0) * * 3)$
C
GN= ((5.ODO* (ETAN**2))-(4.ODO*ETAN*YN)-1.ODO)*
$+(((\mathrm{YN} * * 2)-1.0 \mathrm{DO}) * * 2) /(((E T A N * * 2)-1.0 \mathrm{DO}) * * 3)$
C
CNRB $=A N * F N * G N$
C
IF (RAL .LT. 0.69813) THEN
C
CNRB=0.0dO
GOTO 1000
ENDIF
C
IF ((RBERA .LT. - 0.174532) .OR. (RBETA .GT. 0.34906)) THEN
C
CNRB=0.0do
GOTO 1000
ENDIF
C
1000 CMN $=($ CMN1*EPA02S $)+($ CNDAD*DDA $)+(($ CNDRD*DRUDD*DRFIX3 $) * E P A 43)+$
$+(($ CNDID $*$ DTFLX 3$) * D E L E D D)+(C M N P * P B)+(C M N R * R B)+(D C N B * B E T A)$
$++C N R B$
C
C*********** THRUST TERMS ************************************
CZT=CZENGS+CZENGP

```
CLMT=(CZENGS-CZENGP)*(25.5d0/12.0dO)/BNING
```

CLMT=(CZENGS-CZENGP)*(25.5d0/12.0dO)/BNING
CMMT=CXI*(0.25d0/12.0d0)/OWING+

+ CZY*20.219dO/CWING

$C X=C F Z * S R A L-C F X * C R A L+C X I$

$\mathrm{CY}=\mathrm{CFY}+\mathrm{CYT}$
$C Z=-\left(C F Z * C R A L+C F X^{*} S R A L\right)+C Z T$
CLM $=$ CMLI + CLMI
$C_{M M}=C_{M M}+C_{M M}$
$C N M=C M N+C N M T$

C
c

THE $0.25 / 12.0$ IS THE Z OFFSET OF THE THRUST FROM THE $C G$ THE 20.219 IS THE X OFFSET OF THE THRUST FROM THE OG the $25.5 / 12.0$ IS THE Y OFFSET OF THE THRUST FROM THE $C G$

REIURN CX, CY, CZ, CLM, CMM, CAM TO CALLING PROGRAM.

RETURN
END

Appendix C: Complete Bifurcation Diagrams

Figure c-4 Bifurcrt; miagram of Eleva:nr swep, Left Engine $=0$ lbs
(
Figure C-5 Bifurcation Diagram of Elevator Sweep, Right Engine $=0$ lbs

Bibliography

1. Adams, W.M., Jr. Analytic Prediction of Aircraft Equilibrium Spin Characteristics, NASA Technical Note D-6926, 1972.
2. Anderson, J. "Agile $\operatorname{Aighter}$ Aircraft Simulation," 27th Aerospace Sciences Meeting. Paper no 89-0015. American Institute of Aeronautics and Astronautics: Reno, NV January 9-12, 1989.
3. Barnhart, Billy. F-15 Rotary Balance Data for an Angle-of-Attack Range of 8 Degrees to 90 Degrees. NASA Contractor Report CR-3478, May 1982.
4. Barnhart, Billy. Analysis of Rotary Balance Data for the F-15 Airplane Including the Effect of Conformal Fuel Tanks. NASA Contractor Report CR-3479, April 1982.
5. Barth, Capt Thon:as J. Determination of High Angle-ofAttack Stability of the F-15B Aircraft Using Bifurcation Analysis. MS Thesis, AFIT/GAE/AA/87D-1. School of Engineering, Air Force Institute of Technology (AU), WrightPatterson AFB OH, December 1987.
6. Baumann, Capt Daniel D. F-15B High Angle-of-Attack Phenomena and Spin Prediction Using Bifurcation Analysis. MS Thesis, AFIT/GAE/ENY/89D-01. School of Engineering, Aiz Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1989.
7. Beck, Capt Jeffery A. Bifurcation Analysis of a Model Fighter Aircraft with Control Augmentation. MS Thesis, AFIT/GAE/ENY/89D-02. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1989.
8. Burk, Sanger M. Analytical Determination of the Mechanism of an Airplane Spin Recovery with Different Applied Yawing Moments by the Use of Rotary-Balence Data, NACA Technical Note 3321, December 1954.
9. Carrol, James V. and Raman K. Mehra. "Bifurcation Analysis of Nonlinear Aircraft Dynamics," AIAA paper 82-4254, Journal of Guidance and Control, 5: 529-536 (September-October 1982).
10. Chambers, Joseph R. "High Angle-of-Attack Aerodynamics: Lessons Learned," AIAA 4th Applied Aerodynamics Conference. Paper no 86-1774-CP. San Diego, Ca: American Institute of Aeronautics and Astronautics, June 9-11, 1986.
11. Doedel, Eusebius and Jean Pierre Kernévez. Software for Continuation Problems in Ordinary Differential Equations with Applications. May 1986.
12. Etkin, Bernard. Dynamics of Atmospheric Flight. New York: John Wiley \& Sons, Inc., 1972.
13. Grafton, Sue B. A Study to Determine Effects of Applying Thrust on Recovery from Incipient and Developed Spins for Four Airplane Configurations, NASA Technical Note D-3416, June 1966.
14. Grantham, William D. and Stanley H. Scher. Analytical Investigation and Prediction of Spin and Recovery Characteristics of the North American X-15 Airplane. NASA Technical Memorandum X-294, October 1960.
15. Guicheteau, P. "Bifurcation Theory Applied to the Study of Control Losses on Combat Aircraft," La Recherche Aérospataile, 1982.
16. Guicheteau, P. Bifurcation Theory in Flight Dynamics; An Application to a Real Combat Aircraft. CAS 90 Congress Paper no. 1990-116, Stockhlolm (Sweden): ONERA, September 9-14 1990.
17. Hawkins, Capt Carl A. Application of Bifurcation And Catastrophe Theories to the Near Stall Flight Mechanics. MS Thesis. Massachusetts Institute of Lechnology, December 1985 (AD-A167697).
18. Hui, W.H. and M. Tobak. "Bifurcation Analysis of Aircraft Pitching Motions About Large Mean Angles of Attack," Journal of Guidance and Control, 7 (January-February 1984).
19. Jahnke, Craig C. Application of Dynamical Systems Theory to Nonlinear Aircraft Dynamics. PhD Dissertation. Division of Engineering and Applied Sciences, Caiifornia Institue of Technology, Pasadena Ca, January 1990.
20. Jahnke, Craig C. and Fred E.C. Culick. "Application of Dynamical Systems Theory to Nonlinear Aircraft Dynamics," AIAA Atmospheric Flight Mechanics Conference. Paper no 88-4372. Washington D.C: American Institute of Aeronautics and Astronautics, August 1988.
21. Jahnke, C. and F. Culick. "Application of Dynamical Systems Thecry to the High Angle of Attack Dynamics of the F-14," 28th Aerospace Sciences Meeting. Paper no 90-0221. Reno, NV: fmerican Institute of Aeronautics and Astronautics, January 8-11, 1990.
22. McDonnell Aircraft Company. F-15 Stability and Control and Flying Qualities, Part III Spin Studies. Report No. MDC AO503, 31 July 1972.
23. McDonnell Aircraft Company. F/TF-15 Stability Derivatives, Mass and Tnertia Characteristics Flight Test Basis, Part II Aerodynamic Coefficients and Stability and Control Derivatives. Report No. MDC A4172
24. Neihouse, Anshal I., Walter J. Klinar, and Stanley H. Scher. Status of Spin Research for Recent Airp!ane Designs, NASA Technical Report R-57, 1960.
25. Planeaux, J.B. and T.J. Barth. "High Angle-of-Attack Dynamic Behavior of a Model High-Performance Fighter Aircraft," AIAA Atmospheric Flight Mechanics Conference. Paper no 88-4368. Washington, D.C.: American Institute of Aeronautics and Astronautics, August 1988
26. Planeaux, J.B., J.A. Beck, and D.D. Baumann. "Bifurcation Analysis of a Model Fighter Aircraft with Control Augmentation," AIAA Atmospheric Flight Mechanics Conference. Paper no 90-2836. Washington D.C.: American Institute of Aeronautics and Astronautics, August 1990.
27. "Rockwell/MBB X-31 Makes Second Flight reaching 20,000-Ft. Altitude, Mach 0.6," Aviation Week and Space Technology. October 22, 1990 , p. 117.
28. Ropelewski, Robert R. "Modified F-15 Will Investigate Advanced Control Concepts," Aviation Week and Space Technology. February 11, 1985, pp. 51-53.
29. Scher, Stanley H. An Analytical Investigation of firplane Spin-Recovery Motion by Use of Rotary-Balence Aerodynamic Data, NACA Technical Note 3188, June 1954.
30. Scher, Stanley H., Ernie L. Anglin, and George F. Lawerence. Analytical Investigation of Effect of Spin Entry Technique on Spin and Recovery Characteristics for a 60 Degree Delta-Wing Airplane," NASA Technical Note D-156, December 1959.
31. Schneider, Garret L. Minimum Time Turns Using Vectored Thrust. M.S. Thesis, AFIT/GAE/AA/84D-24. School oof Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1984.
32. Schy, A.A., and M.E. Hannah. "Prediction of Jump Phenomena in Roll-Coupled Maneuvers of Airplanes," Journal of Aircraft, 14: 375-382 (April 1977).
33. Seydel, Rüdiger. From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis. New York: Elsevier Press, 1988.
34. USAF Series F-15A/B/C/D Aircraft Flight Manual, TO 1F-15A-1, 15 January 1984
35. Young, J.W., A.A. Schy, and K.G. Johnson. "Prediction of Jump Phenomena in Aircraft Maneuvers, including Nonlinear Aerodynamic Effects," Journal of Guidance and Contrcl, 1: 26-31 (January-Febuary 1978).
36. Zagaynov, G.I. and M.G. Goman. "Bifurcation Analysis of Critical Aircraft Flight Regimes," International Council of the Aeronautical Sciences, 84: 217,223, 1984.

Vita

Captain Robert J. McDonnell was born on 8 August 1962 in Evanston, Illinois. He graduated from Edina West High School, Edina, Minnesota, in 1980 and received an appointment to the U.S. Air Force Academy in Colorado Springs, Colorado. He graduated from the Academy in 1984 with a Bachelor of Science in Engineering Mechanics and was assigned to the 6595th Shuttle Test Group at Vandenberg AFB, Ca. He served in various capacities, including Orbiter Test Controller, while in the 6595 STG from july 1984 until December: 1986. He was reassigned to the 6595 th Test and Evaluation Group, Vandenberg AFB, when the 6595 STG was deactivated. There he served as a Small ICBM Launch Controller until entering the School of Engineering, Air Force Institute of Technology, in May 1989.

Permanent Address: 5301 W 64th St

Edina, Mn 55435

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow it is important io stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Onlv (Leave blank)
Block 2. Report Date Full publication date including day, month, and year, if avalable (e.g. 1 Jan 88). Must cite at least the year

Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87-30 Jun 88).

Block 4. Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary titie, add volume number, and include subtitle for the specific volume On classified documents enter the title classification in parentheses.

Block 5. Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s) Use the following labels:

| C - Contract | PR - Project |
| :--- | :--- |
| G - Grant | TA - Task |
| PE - Program | WU - Work Unit |
| | Element |

Block 6. Author(s) Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).

Block 7. Performing Organization Name(s) and Address(es). Self-explanatory

Block 8. Performing Orqanization Report Number. Enter the unique alphanumaric report number(s) assigned by the organization performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency Report Number (If known)

Block 11. Supplementary Notes Enter information not included eisewhere such as. Prepared in cooperation with ; Trans of . To be published in. When a report is revised, include a statement whether the new report supersedes or ;upplements the oider report

Block 12a. Distribution/Avaılability Statement.
Denotes public avaılability or limitations. Cite any avaslability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

```
DOD - See DoDD 5230.24,"Distribution
    Statements on Technical
    Documents."
DOE - See authorities.
NASA - See Handbook NHB 2200.2.
NTIS - Leave blank.
```

Block 12b. Distribution Code.
DOD - Leave blank.
DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientıfic and Technical Reports.
NASA - Leave blank.
NTIS - Leave ilank.

Block 13. Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. Price Code. Enter appropriate price code (NTIS only).

Blocks 17.-19. Security Classifications. Selfexplanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e, UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.

Block 20. -imitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entr/ in this block is necessary if the abstract is to be limited If blank, the abstract is assumed to be unlimited.

[^0]: Pecommendations

